∞∑n=3 (1/n)*(1/lnn)*(1/lnlnn)的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 15:23:32
∞∑n=3 (1/n)*(1/lnn)*(1/lnlnn)的敛散性
xR]K0+yl]\} ed:#EȠ(EqB *SJa>@}I9s/\; PZ@;[h~(;ߣሆ7ԏu õt'MAT {j!KD0v8\i&,&z:;"0~r/ -zޤV\]ʢ{;<!̞#Noi|(Q oK6ol4#']]Ϡ }(zBQ+ՠ(pYOsoYe&w1gbHUElD$CjJJʖ֑Ϳ'

∞∑n=3 (1/n)*(1/lnn)*(1/lnlnn)的敛散性
∞∑n=3 (1/n)*(1/lnn)*(1/lnlnn)的敛散性

∞∑n=3 (1/n)*(1/lnn)*(1/lnlnn)的敛散性
设f(x) = 1/(x·ln(x)·ln(ln(x))),易见f(x)在(3,+∞)上单调递减.
根据Cauchy积分判别法,级数∑f(n)与广义积分∫{3,+∞}f(x)dx敛散性相同.
而∫ f(x)dx = ∫ 1/(x·ln(x)·ln(ln(x))) dx
= ∫ 1/(ln(x)·ln(ln(x))) d(ln(x))
= ∫ 1/ln(ln(x)) d(ln(ln(x)))
= ln(ln(ln(x)))+C,
当A → +∞时,∫{3,A} f(x)dx = ln(ln(ln(A)))-ln(ln(ln(3))) → +∞,
广义积分∫{3,+∞}f(x)dx发散,故级数∑f(n) = ∑1/(n·ln(n)·ln(ln(n)))也发散.