三角函数大题求规范过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 05:19:12
三角函数大题求规范过程
xU_SW*;ΤswAh]ghgaAhS'g6QhB05TM'35ZlH|'BݻKfp9{a4޳Əx^;Ļ_Gwoc[{>*˥OX~v|H~ 0[mdzn(f|i8W, i=o|#d鼡o)%,"Ib9?UДt&l8cH+Q%Q"gČ.+j4JQFHPhZ1Q#H,A(E XƒXP:K+Q@Q=JBUG_;{ .mE .9vs6;vMjGloSg⤱g ED\9_@j:ϳ2bA"3l:.qr뢺x![&>ۿ=Ǐ`w:V5/ZҀ^Ƀ]5'U|Dx7MqޑznC}ʺH 7]I$ x^2_g+/˽uWm6ksV ןrW.gGM/U+-Q3Szg`oU{c$i 7p-_&C:Çp\!.P$GѲwf}M!`uv﬒~ %DxʉTX,;v#AQ)ر8h)=MO"DĤ*\IԱxٝ9{XO{0N5bbutc\/?MYJQ89^1瘤ށ%c l06alVhmu, ${ÎE2Ndhn*3J/s"$mtN(_-bOךL@i4xfԗtIxyAB?xtbMJʔ[Q/w%ZdRh0z(9>:tWW5/`%kA Dgd^Ys۝,礖4/|<

三角函数大题求规范过程
三角函数大题求规范过程
 

三角函数大题求规范过程
8.已知:如题设.
(1)求f(x)的表达式;
(2) 求k的取值范围.
f(x)=(√3/2)sin2ωωx+(1/2)cos2ωx+1/2-1/2) (ω>0).
∴f(x)=sin(2ωx+π/6).
∵函数f(x)的最小正周期T=π/2=2π/2ω.
∴ω=2
(1)f(x)=sin(4x+π/6).---所求f(x)的表达式;
(2) 将f(x)向右平移π/8个单位,得:f(x)=sin[4(x+π/24-π/8)]=sin(4x-π/3),
再将f(x)=sin(4x-π/3)的横坐标伸长到原来的2倍(综坐标不变),得:f(x)=sin(2x-π/3)=g(x)
∴g(x)=sin(2x-π/3).
若g(x)+k=0在[o,π/2]上有且有一个实数解,则k=-sin(2x-π/3).
∴0≤x≤π/2,-π/3≤2x-π/3≤2π/3.
∴-√3/2≤sin(2x-π/3≤1.
∴-1≤k≤√3/2.
9.已知:如题设、图示.
求:管道长度L,...
L=HE+EF+FH.
HE=HB/cosθ=10/cosθ;
HF=AH/cos(180-90-θ)=AH/sinθ=10/sinθ;
EF^2=HE^2+AH^2.
=100/cos^2θ+100/sin^2θ.
=[100(sin^2θ+cos^2θ)/(sin^2θcos^2θ)].
=100/(sinθcosθ}^2.
EF=10/sinθcosθ.
L=10[(sinθ+cosθ)+1]/(sinθcosθ).
(1) L=20[(sinθ+cosθ)+1]/sin2θ.(*) (0<θ≤π/3) ---L与θ的函数关系式;
当 sinθ+cosθ=(√3+1)/2时,则(sinθ+cosθ)^2=[(√3+1)/2]^2.
即 ,1+sin2θ=(2+√3)/2.
sin2θ=√3)/2.
L={[20(√3+1)/2]+1}/(√3/2)},化简得:
(2) L=20(1+√3).,(米)--- 所求污水净化处理管道的总长.
由L的表达式(*)可知:当分母sin2θ=1(最大时,分数值L取得最小值.)
sin2θ=1,2θ=π/2,θ=π/4时,L=Lmin=20(√2+1) (米).
(3) 当θ=π/4时,Lmin=20(√2+1) ( 米).