f(x)=-x²+2ax+2,x属于[-1,2],a属于R 1.求函数f(x)的最大值g(a) 2.若g(a)=4,求a的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:29:37
f(x)=-x²+2ax+2,x属于[-1,2],a属于R 1.求函数f(x)的最大值g(a) 2.若g(a)=4,求a的值
x)KӨдխPS646J6ҩxqޓ]}Ѻ:F:^޳MO>!{:jy6Ob Fz/x&:@]@@%6IEtQf | 0){>eE3>KAy:{ߋ xw˓ Oz6Ɏ%Ov-y޴Siؽ@Ϧ|"lN=F ONN4z6}NFmI5HBF 1C

f(x)=-x²+2ax+2,x属于[-1,2],a属于R 1.求函数f(x)的最大值g(a) 2.若g(a)=4,求a的值
f(x)=-x²+2ax+2,x属于[-1,2],a属于R 1.求函数f(x)的最大值g(a) 2.若g(a)=4,求a的值

f(x)=-x²+2ax+2,x属于[-1,2],a属于R 1.求函数f(x)的最大值g(a) 2.若g(a)=4,求a的值
(1) 由题可知该f(x)图象与x轴一定有两交点,及f(x)=0该方程有两根.
(2) 当a2时,g(a)=f(2)=4a-2; 当-1