如果ax + b = cx + d,x属于R,怎么证明a = c and b = d.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:30:21
如果ax + b = cx + d,x属于R,怎么证明a = c and b = d.
xRN@~!]A΄e&U*0  # ©t1x7|J!KniX%]R%#ӷ6rjdj-GevS¸M4}?S~Uv@[uXwʪC`SJO3l1-aıf\M![XxaY9DQOdgS~M+Zr=f'hUy6 .bI"Nuu]5ɯl`Z6l])gFpL]H 8V-vpxb",̿bF bpUm.5Ƒ13ǥ__:pme}f %pOsw)i3@ "U]"#ֆ82Lk

如果ax + b = cx + d,x属于R,怎么证明a = c and b = d.
如果ax + b = cx + d,x属于R,怎么证明a = c and b = d.

如果ax + b = cx + d,x属于R,怎么证明a = c and b = d.
证明:
ax+b=cx+d,根据等式性质,可得:
(a-c)x+(b-d)=0,
∵x∈R,即该等式中x不管取何值,等式都成立,那么,
当x=0时,等式也成立,即:
b=d;
此时原式可写成:
(a-c)x=0
因为上式恒成立,因此:
a-c=0,即
a=c
综上:a=c,b=d

ax + b = cx + d

y1 = ax + b
y2 = cx + d

y1 = y2
a = c
b = d

证明:
∵ ax + b = cx + d
∴(a-c)x=(d-b) 1)
要使1)式成立,且x∈R
只有a-c=0,并且d-b=0
所以a=c and b=d