奥数题求解1/2+1/3+1/4+1/5+..+1/25)+(2/3+2/4+2/5+..+2/25)+(3/4+3/5+3/6+..+3/25)+.1/2+1/3+1/4+1/5+...+1/25)+(2/3+2/4+2/5+.+2/25)+(3/4+3/5+3/6+.+3/25)+)+(23/24+23/25)+24/25

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/02 13:24:33
奥数题求解1/2+1/3+1/4+1/5+..+1/25)+(2/3+2/4+2/5+..+2/25)+(3/4+3/5+3/6+..+3/25)+.1/2+1/3+1/4+1/5+...+1/25)+(2/3+2/4+2/5+.+2/25)+(3/4+3/5+3/6+.+3/25)+)+(23/24+23/25)+24/25
xTn0~\ƱT/UAl*xʟZu?T NA\&vҫ'?mTBHsc%5D?ٌS90  0qP1ca4 ZɒO˒jd"S.@(>yn'ldYTEU'stيɎ2W( ᶦ3m4tR@hrL)ND3%fPZaZBs.,u+ gg@|ibDUdʏRrE\t5;U6VO{ 뇦6ZDհVߗďjygL8i ӣ6+_=9nOY{ =^rba^\~ g++яeΆ62|swoel6R<,4T%GSծ/'Cyگ`|u"׺i &15a")JBY~q Ol~CquoĬ1Zi `PL+T|ټ䰡Zax:5[4WշEva#PgWK Z!<r\Qt ݱ?5_

奥数题求解1/2+1/3+1/4+1/5+..+1/25)+(2/3+2/4+2/5+..+2/25)+(3/4+3/5+3/6+..+3/25)+.1/2+1/3+1/4+1/5+...+1/25)+(2/3+2/4+2/5+.+2/25)+(3/4+3/5+3/6+.+3/25)+)+(23/24+23/25)+24/25
奥数题求解1/2+1/3+1/4+1/5+..+1/25)+(2/3+2/4+2/5+..+2/25)+(3/4+3/5+3/6+..+3/25)+.
1/2+1/3+1/4+1/5+...+1/25)+(2/3+2/4+2/5+.+2/25)+(3/4+3/5+3/6+.+3/25)+)+(23/24+23/25)+24/25

奥数题求解1/2+1/3+1/4+1/5+..+1/25)+(2/3+2/4+2/5+..+2/25)+(3/4+3/5+3/6+..+3/25)+.1/2+1/3+1/4+1/5+...+1/25)+(2/3+2/4+2/5+.+2/25)+(3/4+3/5+3/6+.+3/25)+)+(23/24+23/25)+24/25
(1/2+1/3+1/4+…+1/25)+(2/3+2/4+2/5+…2/25)+…+(23/24+23/25)+24/25
=1/2+(1/3+2/3)+(1/4+2/4+3/4)+(1/5+2/5+3/5+4/5)+.+(1/25+2/25+.+24/25)
=1/2+2*3/(2*3)+3*4/(2*4)+4*5/(2*5)+.+24*25/(2*25)
=1/2+2/2+3/2+4/2+.+24/2
=1/2(1+2+3+4+.+24)
=1/2*24*25/2
=150

(1/2+1/3+1/4+...+1/25)+(2/3+2/4+2/5+...+2/25)+(3/4+3/5+3/6+...+3/25)+...+(23/24+23/25)+24/25
=(1/2)+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/24+2/24+...+23/24)+(1/25+2/25+...+24/25)
考察一般项第n项:
1/(n+1...

全部展开

(1/2+1/3+1/4+...+1/25)+(2/3+2/4+2/5+...+2/25)+(3/4+3/5+3/6+...+3/25)+...+(23/24+23/25)+24/25
=(1/2)+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/24+2/24+...+23/24)+(1/25+2/25+...+24/25)
考察一般项第n项:
1/(n+1)+2/(n+1)+...+n/(n+1)=(1+2+...+n)/(n+1)=[n(n+1)/2]/(n+1)=n/2
(1/2+1/3+1/4+...+1/25)+(2/3+2/4+2/5+...+2/25)+(3/4+3/5+3/6+...+3/25)+...+(23/24+23/25)+24/25
=(1/2)+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/24+2/24+...+23/24)+(1/25+2/25+...+24/25)
=(1+2+...+24)/2
=24×25/2
=300

收起

150

数理答疑团为您解答,希望对你有所帮助。
原式=1/2 +(1+2)/3 + (1+2+3)/4 + (1+2+3+4)/5 + ...+ (1+2+3+...+24)/25
=1/2 + 1 + 3/2 + 2 + ...+ 12
=1/2+2/2+3/2+4/2+......+24/2
=1/2 *(1+2+3+4...

全部展开

数理答疑团为您解答,希望对你有所帮助。
原式=1/2 +(1+2)/3 + (1+2+3)/4 + (1+2+3+4)/5 + ...+ (1+2+3+...+24)/25
=1/2 + 1 + 3/2 + 2 + ...+ 12
=1/2+2/2+3/2+4/2+......+24/2
=1/2 *(1+2+3+4+...+24)
=1/2 * (1+24)*24/2
=150
最简单、完整、准确的答案,请采纳!
祝你学习进步,更上一层楼! (*^__^*)

收起