x+y+z=0 求证:(x^2-y^2)+(xz-yz)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:25:44
x+y+z=0 求证:(x^2-y^2)+(xz-yz)=0
x)ЮԮ5Px{fiTVijkTTVVi$PΆ31@S4l4amByvP{m}g.&m0Ybv@>t2>ӁfVXOvz,@[ݪ{z^u)ąt0́j~o:=HޢY

x+y+z=0 求证:(x^2-y^2)+(xz-yz)=0
x+y+z=0 求证:(x^2-y^2)+(xz-yz)=0

x+y+z=0 求证:(x^2-y^2)+(xz-yz)=0
(x^2-y^2)+(xz-yz)
=(x-y)(x+y)+z(x-y)
=(x-y)(x+y+z)
=0

原式=(x+y)(x-y)+(x-y)z=(x-y)(x+y+z)=0

证明:
(x^2-y^2)+(xz-yz)
=(x+y)(x-y)+(x-y)*z
因为x+y+z=0
所以x+y=-z,代入原式
=-z*(x-y)+(x-y)*z
=0
得证