过抛物线Y²=2PX(P>)的焦点F的直线与抛物线相交于A(X1,Y1),B(X2,Y2)证明Y1Y2=-P²

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 00:23:15
过抛物线Y²=2PX(P>)的焦点F的直线与抛物线相交于A(X1,Y1),B(X2,Y2)证明Y1Y2=-P²
xRMKA+du@r9GH/=zZ'5uMcՖ`h3{/?=ͳ|l[[Mo͙gk4jeI 81@ tEz~0 X6ihCL4 lI^Nյ?VR"da5dĭ1Ló-7ұ E~X.f:V~NZ褐J[csg;=0JJ,U5#S32 @oP2&#%J:T` 3|Ժ>j3e9f

过抛物线Y²=2PX(P>)的焦点F的直线与抛物线相交于A(X1,Y1),B(X2,Y2)证明Y1Y2=-P²
过抛物线Y²=2PX(P>)的焦点F的直线与抛物线相交于A(X1,Y1),B(X2,Y2)证明Y1Y2=-P²

过抛物线Y²=2PX(P>)的焦点F的直线与抛物线相交于A(X1,Y1),B(X2,Y2)证明Y1Y2=-P²
设直线AB的斜率为k (a为直线AB的倾斜角)
当a=π/2时,AB垂直于x轴,x=p/2
得y=±p
所以A B的坐标分别为(p/2,p),(p/2,-p)
y1*y2=-p^2,x1*x2=p^2/4
当a≠π/2
y^2=2px
焦点(p/2,0),准线x=-p/2
则直线AB:y=k(x-p/2)
抛物线:y^2=2px
联立
k^2x^2-(k^2p+2p)x+k^2*p^2/4=0
则x1*x2=p^2/4
y1*y2=-p^2
很高兴为您解答,【学习宝典】团队为您答题.
请点击下面的【选为满意回答】按钮,