设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明在(a,b)内存在一点z,使f'(z)=f(z)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:16:43
x){n_F9+ubzڿu:OvLIHԴMHҴ5yٌ>2
2ͧmO hxJiU U6IE1XΆn~{I:`8
M`3AƦ=lx{)ݬ BDdqAbȯ 9
设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明在(a,b)内存在一点z,使f'(z)=f(z)
设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明在(a,b)内存在一点z,使f'(z)=f(z)
设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明在(a,b)内存在一点z,使f'(z)=f(z)
令g(x)=e^(-x)f(x)
则g(a)=g(b)=0
所以存在z,使得
g'(z)=e^(-z)f'(z)-e^(-z)f(z)=0
即 f'(z)-f(z)=0
f'(z)=f(z)
设f(x)在[a,b]二阶可导,且f''(x)
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
设函数f(x),g(x)在[a,b] 上均可导,且f'(x)
设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^2.
设函数f(x)在R上的导函数为f'(x),且f(x)>f'(x).若a>b,则()A.e^b*f(b)
设函数f(x)在[a,b]可导 且f'(x)
设函数f x,gx在[a,b]上可导,且f'x
介值定理推论的证明设f(x)在[a,b]内连续,且f(a)*f(b)
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
设函数f(x)在(a,b)内连续,且f(a+),f(b-)存在,证明:函数f(x)在(a,b)内有界.
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a