u=f(x,y,z)=e^(x^2+y^2+z^2),而z=x^2siny.求du

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:29:42
u=f(x,y,z)=e^(x^2+y^2+z^2),而z=x^2siny.求du
xA B!EPQե+hDPGmME=_j{߹WFݎUUnx FVPӹ9t~elGcBGo5r $t/aq@BA{-:FcsH% )9|:禷v6Yjawʇ

u=f(x,y,z)=e^(x^2+y^2+z^2),而z=x^2siny.求du
u=f(x,y,z)=e^(x^2+y^2+z^2),而z=x^2siny.求du

u=f(x,y,z)=e^(x^2+y^2+z^2),而z=x^2siny.求du
du=e^(x^2+y^2+z^2)d(x^2+y^2+z^2)=e^(x^2+y^2+z^2)(dx^2+dy^2+dz^2)
=e^(x^2+y^2+z^2)(2xdx+2ydy+2zdz)
=e^(x^2+y^2+z^2)(2xdx+2ydy+2x^2siny(2xsinydx+x^2cosydy))
=e^(x^2+y^2+x^4sinysiny)((2x+4x^3sinysiny)dx+(2y+2x^4sinycosy)dy)

设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^2)+d^2(z)/d(y^2)=e^(2*x)*z,求f(u).令u=e^x*siny,则z=f(u)∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),∂²z/∂x²=∂(u 设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^2)+d^2(z)/d(y^2)=e^(2*x)*z,求f(u). 已知调和函数u=e^xcosy+x^2-y^2+x 求解析函数f(z)=u+iv z=f(u) u=x/y,求x*∂z/∂x +y*z∂z/∂y u=f(x,y,z)=e^(x^2+y^2+z^2),而z=x^2siny.求du 设z=f(x^2-y^2,e^(xy)),求偏导z/x,偏导z/y 已知x/(y+z+u)=y/(z+u+x)=z/(u+x+y)=u/(x+y+z)求(x+y)/(z+u)+(y+z)/(x+u)+(z+u)/(x+y)+(u+x)/(y+z) x/(y+z+u)=y/(z+u+x)=z/(u+y+x)=u(x+y+z)求(x+y)/(z+u)+(y+z)/(y+x)+(z+y)/(x+y)+(u+x)/(z+y) 设f(x,y,z)=e^x*y*z^2,其中z=z(x,y)是由x+y=z+x*e^(z-x-y)确定的隐函数,则f'x(0,1,1)= 微积分题目 求解答z=f(x+y)+f(x-y),且f(u)可微,∂z/∂x +∂z/∂y= 2f'(x+y) 如果可以能不能给讲讲怎么做 没有过程也可以 就是想知道怎么做的设 z=e^(u-2v),u=sinx,v =x^2 求dz/dx 答案 z=y/f(x^2-y^2),其中f(u)可导,验证 设z=xy+x^2F(u),u=y/x,F(u)可导,证明x(偏z/偏x)+y(偏z/偏y)=2z 设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程e^xy-y=0和e^z-xz=0所确定,求du/dx u=f(x,y,z),y=y(x),z=z(x)分别由e^xy-y=0和e^z-xz=0确定,求du/dx y=e^f(x)+f(e^x),其中f(u)可导,求y' u=cos(2x+y+z),其中z=f(x,y)由方程y*x^2-x^2*z-x=0确定,求:u对x求偏导(x=1,u=0) 设u=f(x,y,z),φ(x^2,e^y,z)=0,y=sinx,其中f,φ有一阶连续偏导数,且&φ/&z ≠ 0,求du/dx 设u=f(x,y,z),φ(x^2,e^y,z)=0,y=sinx,其中f,φ有一阶连续偏导数,且&φ/&z ≠ 0,求du/dx