Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:35:18
Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn)
xUN@/ڱ3vlBDjwYBe3٥9{^sO$$+,sX&MFS6l3*2$Z_0pƤi49[$aEMm4N"!pCn)xx]yݟ~J0]PN owV18;m$ qnB{K[G֌NݴŅW^>~ILs փ0h =k;v8 7{*#UeefS+|[i]ieueϡ}{7#4MDM TlOoQ0\B-2W7d=vJ[;?KL

Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn)
Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn)

Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn)
证明:
先证一个结论.
设x,y≥0且x+y≤ 2/3,则(1-x) x^2+(1-y) y^2 ≤ (1-x-y) (x+y)^2.
(1-x) x^2+(1-y) y^2-(1-x-y) (x+y)^2
=[(1-x) x^2-(1-x-y)x^2]+[(1-y) y^2-(1-x-y)y^2]-2xy(1-x-y)
=yx^2+xy^2-2xy(1-x-y)
=xy[3(x+y)-2]
≤0
-------------------------------------------------
下面用数学归纳法来证明原命题.
当n=2时,容易验证结论是正确的.
设当n=m (m≥2)时,原命题是正确的.
当n=m+1时,不失一般性,设X1≥X2≥X3≥.≥Xm≥ Xm+1,则Xm+Xm+1≤2/(m+1)≤2/3.
(若Xm+ Xm+1>2/m,则 2=2(X1+X2+...+Xm+Xm+1)=(X1+X2)+(X2+X3)+...+(Xm+Xm+1)+(Xm+1+X1)≥(m+1)(Xm+Xm+1)>2,矛盾.)
用刚开始得到的结论,显然有:(1-Xm)(Xm)^2+(1-Xm+1)(Xm+1)^2≤(1-Xm-Xm+1)(Xm+Xm+1)^2.
设Y1=X1,Y2=X2,...,Ym-1=Xm-1,Ym=Xm+Xm+1,则
X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...XmXm+1(Xm+Xm+1)
=(1-X1)(X1)^2+(1-X2)(X2)^2+.+(1-Xm)(Xm)^2+(1-Xm+1)(Xm+1)^2
≤(1-Y1)(Y1)^2+(1-Y2)(Y2)^2+.+(1-Ym)(Ym)^2
≤1/4,
证毕.

易证明:对于任何x,若0<=x<=1,有均值不等式,则x(1-x)<=1/4 (1)。
记题中不等式左边为S,则S=x1^2(1-x1)+x2^2(1-x2)+...+xn^2(1-xn);
对于1<=i<=n,i为整数;0<=xi<=1,则xi*xi(1-xi)<=xi/4;
所以s<=(x1+x2+...xn)/4=1/4 (2);
...

全部展开

易证明:对于任何x,若0<=x<=1,有均值不等式,则x(1-x)<=1/4 (1)。
记题中不等式左边为S,则S=x1^2(1-x1)+x2^2(1-x2)+...+xn^2(1-xn);
对于1<=i<=n,i为整数;0<=xi<=1,则xi*xi(1-xi)<=xi/4;
所以s<=(x1+x2+...xn)/4=1/4 (2);
考察等式成立条件,由(1)成立条件知x=1/2,结合条件知当且仅当xi中有两个等于1/2时成立。

收起

Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn) 1,x1,x2...Xn,成等比数列,x1 x2..xn>0,x1*x2*...xn=?x1,x2...Xn,2成等比数列,x1 x2..xn>0,x1*x2*...xn=? 设xi∈R+(i=1,2,n),求证:x1^x1x2^x2,xn^xn≥(x1x2,xn)^1/n(x1+x2+,+xn) 用柯西不等式证明该不等式.已知xi≥0(i=1,2,3,……,n),√(x1+x2+……+xn)(x1^3+x2^3+……+xn^3)≥x1^2+x^2+……+xn^2 本人求教一个概率论知识点!若X~B(n,p),则X=X1+X2+X3…+Xn(Xi相互独立),且Xi~(0-1)分布.其中X=X1+X2+X3…+Xn是怎么回事呀? 1,x1,x2,...xn,2 成等差数列,则x1+x2...+xn=?若成等比数列且x1...xn>0,则x1*x2*.xn=?要具体过程,谢谢 线性代数 向量空间:设V1={x=(x1,x2,...xn)|xi为实数,满足x1+x2+...+xn=0},V1是否为向量空间?为什么? 线性代数 向量空间:设V1={x=(x1,x2,...xn)|xi为实数,满足x1+x2+...+xn=0},V1是否为向量空间?为什么? 已知正实数xi:x1*x2*x3*x4*...*xn=1.求证:[1/(n-1+x1)]+[1/(n-1+x2)]+...+[1/(n-1+xn)]= 设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的一个. 已知xi∈R,x1+x2+……+xi=0, |x1|+|x2|+...+|xi|=1,求证x1/1+x2/2+…+xi/i 设x1,x2,...,xn>0,(1)若1,x1,x2,...,xn,2成等差数列,则x1+x2+...+xn=____;(2)若1,x1,x2,...,xn,2成等比数列,则x1*x2*...*xn=_____. 设样本观测值x1,x2,x3…xn,为了估计总体ξ的方差,我们利用下面的公式ỡ的平方=k∑(xi+1-xi)*(xi+1-xi),求k的值,使ỡ的平方使总体方差的无偏估计值,其中x1,x2,x3,xi,xn是x的下标,(xi+1-xi)*(xi+ 设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn. 设有n个有理数x1,x2…xn.满足|xi|<1(i=1,2…n),且|x1|+|x2|+…+|xn|=19+|x1+x2+…+xn|求n的最小值. 设x1,x2……xn为整数设 X1,X2,...Xn 整数 并且满足:(1)-1小于等于Xi小于等于2 ,i=1,2,...,n:(2)X1+X2+,Xn=19:(3)X1^2+X2^2+.Xn^2=99 求X1^3+X2^3+.Xn^3的最大值与最小值 已知随机变量X1,X2……Xn相互独立,且每个Xi的期望都是0,方差都是1,令Y=X1+X2+……+Xn,求E(Y^2)其中Y^2表示Y的平方 设x1,x2,.,xn为正整数.求证(x1+x2+.xn)(1/x1+1/x2+.1/xn)>=n平方