证明方程X^5+5X+1=0在区间(-1,0)内有且只有一个实根.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:43:27
证明方程X^5+5X+1=0在区间(-1,0)内有且只有一个实根.
xN@_e4:mÕ.X,Th]2su+8421svf5UͰ0\Aez:N^]iЀڽ<4ZysckTr_i踝M9id!Gh8!tSY[B":!?>P48`;uhQ:Vv#iaխÍC-Pf !H3đ a=@60);t*G(bU/XV6|NέoSƦVȌCш9V:ŠBIKa($*.ѧ֏&8̥JO.~O.Z8PXi#""^^[}

证明方程X^5+5X+1=0在区间(-1,0)内有且只有一个实根.
证明方程X^5+5X+1=0在区间(-1,0)内有且只有一个实根.

证明方程X^5+5X+1=0在区间(-1,0)内有且只有一个实根.
令f(x) = x^5+5x+1
则f'(x) = 5x^4 + 5,导函数在(-1,0)上恒大于0
所以f(x)严格递增,又因为f(-1) = -1 -5 +1 = -5 < 0,f(0) = 1 > 0且f(x)在(-1,0)上连续
由中值定理可得,必定存在t属于(-1,0)且f(t)=0.因为严格递增,此t必定唯一.

f(-1)=-5,f(0)=1
求导5x^4+5>0恒成立,所以函数在定义域内单调递增
所以在(1,0)只有一个实根

设f(x)=X^5+5X+1
f(0)=1,f(-1)=-3
所以在区间(-1,0)f(x)和x轴有交点,即X^5+5X+1=0区间(-1,0)内有实根
f'(x)=5x⁴+5>0
所以f(x)是单调递增函数,与x轴只有一个交点
综上所述方程X^5+5X+1=0在区间(-1,0)内有且只有一个实根