1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + 1/(x+4)(x+5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:16:20
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + 1/(x+4)(x+5)
x)3ר6F `k &p kiTOn;jڮWY6>[F]^]6v]N >VC`f@^HH,c}O;V?]|V=~~瓽 |>e~qAb4\l+2yy@bgY ylӓ}Oxgr0|gjH<l ^yOvb'ڞNX~|$(

1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + 1/(x+4)(x+5)
1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + 1/(x+4)(x+5)

1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) + 1/(x+4)(x+5)
1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+1/(x+4)(x+5)
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)+1/(x+4)-1/(x+5)
=1/(x+1)-1/(x+5)
=-6/(x^2+6x+5)
我从别处COPY的 希望对你有用

利用1/n(n+1)可分解成为1/n-1/(n+1),
例式可变为:
1/(x+1)-1/(x+2) + 1/(x+2)-1/x+3) + 1/(x+3)-1/(x+4) + 1/(x+4)-1/(x+5)
这下不用说了吧?