利用等价无穷小的性质,求下列极限1.lim [(tanX-sinX)/(sinX)^3] X无穷接近0 其中(sinX)^3为sinX的三次方 但是我算不出啊 2.还有这一题,lim [e^(1/X)] X接近无穷大,这个答案是1,我也不知道怎么算

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:23:20
利用等价无穷小的性质,求下列极限1.lim [(tanX-sinX)/(sinX)^3] X无穷接近0 其中(sinX)^3为sinX的三次方 但是我算不出啊 2.还有这一题,lim [e^(1/X)] X接近无穷大,这个答案是1,我也不知道怎么算
xMoAǿ@]7&zĔ(V;Xh+*LXZ>3'V?o pnh:&y1ÜY{Ob]C =29޷G˽W³L{R]/p[Pym[Omt$R&A*23e+Uӊe $Qu4,]~1rA<Ѥ fHbY4 [fGM,_l^ +N 5.Ŭ~SV,xN"Qk ێ{Z\$khzm|[+'ɦg we /(>֪NVSH~1 )KلYg3azE5(;[WqJ6^ŷsI`*k~lN`[~ =,epn=v"CN 攰Qmj(Q#1i译8 j8![5ꞑ"XG!EFiQhv(軏M<-f(+s{(@"]O?b:I720+/JTH22w_+

利用等价无穷小的性质,求下列极限1.lim [(tanX-sinX)/(sinX)^3] X无穷接近0 其中(sinX)^3为sinX的三次方 但是我算不出啊 2.还有这一题,lim [e^(1/X)] X接近无穷大,这个答案是1,我也不知道怎么算
利用等价无穷小的性质,求下列极限
1.lim [(tanX-sinX)/(sinX)^3] X无穷接近0 其中(sinX)^3为sinX的三次方 但是我算不出啊
2.还有这一题,lim [e^(1/X)] X接近无穷大,这个答案是1,我也不知道怎么算

利用等价无穷小的性质,求下列极限1.lim [(tanX-sinX)/(sinX)^3] X无穷接近0 其中(sinX)^3为sinX的三次方 但是我算不出啊 2.还有这一题,lim [e^(1/X)] X接近无穷大,这个答案是1,我也不知道怎么算
首先化简:
lim [(tanX-sinX)/(sinX)^3]
=lim [(sinX/cosX-sinX)/(sinX)^3]
=lim [(1/cosX-1)/(sinX)^2]
=lim [(1-cosx)/cosx]/(sinX)^2
因为1-cosx与1/2(sinX)^2
代入得
lim [1/2(sinX)^2/cosx]/(sinX)^2
=1/2
(答案有误)
lim [e^(1/X)] X接近无穷大
1/X趋向0,则
lim [e^(1/X)] =lim [e^(0)] =1

1.lim(tanX-sinX)/(sinX)^3=lim(1-cosX)/X^2=1/2
2.X->无穷大得到1/X->0,利用指数的连续性直接代入即可。

第一题我练习册有,答案应该是1/2,这样你算算看,不会再找我
第二题解法:
x趋近于无穷大,则1/x=0,E^0=1

1. 原式=lim(sinx<1-cosx>)/cosx/sinx^3=LIM1/2/cosx*x^3=1/2 2. 1/X趋于零,e的零次等于1。第一题用了等价代换,第一题是大学高数的书本原题答案是1/2。