关于函数f(x)=lg[(x^2+1)/|x|] (x不等于0,x属于R)A.函数y=f(x)的图象关于y轴对称B.在区间(负无穷大,0)上,函数f(x)是减函数C.函数f(x)的最小值为lg2D.在区间(1,正无穷大)上,函数f(x)是增函数其中正确

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:28:55
关于函数f(x)=lg[(x^2+1)/|x|] (x不等于0,x属于R)A.函数y=f(x)的图象关于y轴对称B.在区间(负无穷大,0)上,函数f(x)是减函数C.函数f(x)的最小值为lg2D.在区间(1,正无穷大)上,函数f(x)是增函数其中正确
xnP_K Z] Pq,iLTZ 0cp.茏Y:.NUUX7cMH"-`#{cK: {+##f0*aXÇ'cITaC8Ǵ=xw84ŋ\N[fKۥ>5q~Xߣ]U`2%Gߒ ו͚8C] ^vdc gy058h%r2*0 ؽ/h}2ijeh5i%1:2CT=Mv9dub)VD1ri C6,= zXiFe4npK߮.XL*^tst~ q ',^ A/A)K%*hZa(&$9yXhH Vr;BpKue q*P 1Ě¾vk9P~ 3' oZ0"͎B'q2Ac,h1I /aods Oyɾ߱$

关于函数f(x)=lg[(x^2+1)/|x|] (x不等于0,x属于R)A.函数y=f(x)的图象关于y轴对称B.在区间(负无穷大,0)上,函数f(x)是减函数C.函数f(x)的最小值为lg2D.在区间(1,正无穷大)上,函数f(x)是增函数其中正确
关于函数f(x)=lg[(x^2+1)/|x|] (x不等于0,x属于R)
A.函数y=f(x)的图象关于y轴对称
B.在区间(负无穷大,0)上,函数f(x)是减函数
C.函数f(x)的最小值为lg2
D.在区间(1,正无穷大)上,函数f(x)是增函数
其中正确命题是?请分析,不要只是答案.
提问者:好好读书吧520 - 实习生 一级

关于函数f(x)=lg[(x^2+1)/|x|] (x不等于0,x属于R)A.函数y=f(x)的图象关于y轴对称B.在区间(负无穷大,0)上,函数f(x)是减函数C.函数f(x)的最小值为lg2D.在区间(1,正无穷大)上,函数f(x)是增函数其中正确
把它变形为f(x)=lg[|x|+1/|x|]
可以真数看出是一个典型的耐克函数
只不过x被加了绝对值
接下来就好办了
因为真数是|x|+1/|x|
所以f(-x)=f(x)
所以关于y轴对称
①对
lg不要管它因为它本身就是一个增函数
所以看真数
当x>0的时候 真数为x+1/x在x>0是耐克函数 这里你自己画个图吧
因为f(-x)=f(x)所以是偶函数
画出x<0时它关于y轴对称的图像
可以看到当x∈(0,1)∪(1,+无穷)增
x∈(1,0)∪(0,1) 减
所以②错
因为x>0x+1/x≥2根号x+1/x=2
又是偶函数
所以在x=1时取最小值lg2
所以③对