f(x)=(2sin(x+π/6)+x^4+x)/(x^4+cosx))+1则有f(x)=2sin(x+π/6)+x^4+x/(x^4+cosx)则有在闭区间-π/2到闭区间π/2的最大值最小值为M与N,求证M+N=4?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 05:10:10
xՒN@_+bg4Q.+*S&D#@D_w =xg5&nL4gD
FbPR[;d~EJIagZMI, \YZiq5rԁ[0(bLȿ]94 0XA9q8Z#ѵ=~Fq|2G#%;Z-K>|R'N=zEhۙ
)őR-Θ`k7L9oi^;M{k\kxC[cgsLtj9ȽXg`Kѻ\A: *}nb偒'
>kccHYy|%PZ*CҸ@7ɻ-?扷HYS4ё(Jk
f(x)=(2sin(x+π/6)+x^4+x)/(x^4+cosx))+1则有f(x)=2sin(x+π/6)+x^4+x/(x^4+cosx)则有在闭区间-π/2到闭区间π/2的最大值最小值为M与N,求证M+N=4?
f(x)=(2sin(x+π/6)+x^4+x)/(x^4+cosx))+1则有
f(x)=2sin(x+π/6)+x^4+x/(x^4+cosx)则有在闭区间-π/2到闭区间π/2的最大值最小值为M与N,求证M+N=4?
f(x)=(2sin(x+π/6)+x^4+x)/(x^4+cosx))+1则有f(x)=2sin(x+π/6)+x^4+x/(x^4+cosx)则有在闭区间-π/2到闭区间π/2的最大值最小值为M与N,求证M+N=4?
先化简肯定没问题,然后再观察式子的特点.
∵2sin(x+π/6)=√3sinx+cosx
∴f(x)=(2sin(x+π/6)+x^4+x)/(x^4+cosx)+1
=(√3sinx+cosx+x^4+x)/(x^4+cosx))+1
=(√3sinx+x)/(x^4+cosx)+2
设g(x)=(√3sinx+x)/(x^4+cosx)
在区间[-π/2,π/2]上,g(-x)=-g(x)
即g(x)在[-π/2,π/2]上奇函数,也就是说函数图像关于原点对称.
设g(x)在[-π/2,π/2]的最大值和最小值分别是T与t
由于g(x)关于原点对称,所以T+t=0
而f(x)=g(x)+2在[-π/2,π/2]的最大值M=T+2,最小值m=t+2
∴M+N=(T+2)+(t+2)=(T+t)+(2+2)=4
f(x)=sin(2x+π/6)怎么求导
已知F(X)=根号3COS^2 X+SIN XCOS X-2SIN X*SIN(X-π/6),求F(X)的最大值
若f(x)=sin πx/6,则f(1)+f(2)+...+f(102)=?
函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
已知函数f(x)=[2sin(x-π/6)+√3sin x]cos x+sin^2x,x∈R
f(x)=(6sin^4x-7sin^2x+2)/(sin^2x-cos^2x)
已知函数f(x)=sin(2x+π/6)+sin(2x+π/6)+2cos²x
f(sin^2x)=x/sinx 求f(x)
f(x)=sin^2-sin[2x-(π/6)]的值域过程
f(x)=sin(x+π/4)图像怎样变成F(x)=cos(2x)
f(x)=sin(x-π)cos(π+x)+sin(x+π/2)cos(-x) ①f(x)最小正周期 ②[-π/6,π/2]f(x)最大值和最小值③f(x)递增区间
已知函数f(x)=sin^2(x-π/6)+sin^2(x+π/6),若x∈[-π/3,π/6],求函数f(x)的值域
函数f(x)=根号3sinωx+cosωx(ω>0)怎样变为f(x)=2sin(ωx+π/6)
f(x)=2sin(x+π/6),求f(2x)>1的x的取值范围
f(x)=(1+cotx)sin^2x-2sin(x+π/4)sin(x-π/4)还有一题,
已知函数f(x)=(1+1 anx)sin^2x+m sin(x+π/4)sin(x-π/4)
为什么 f(x)=sin(x+π/2)=cosx
设函数 f(x)=sin(2x+y),(-π