a+b+c=10,且1/(a+1)+1/(b+c)+1/(a+c)=14/17,求c/(a+b)+a/(b+c)+b/(c+a)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:16:11
x)KNN54ycF6
D mkhohlcS2H IS; I_#Y;Q
{li~
݇Cm=@{:c@`eP`X6C`n28J(ű YK m_\g4
a+b+c=10,且1/(a+1)+1/(b+c)+1/(a+c)=14/17,求c/(a+b)+a/(b+c)+b/(c+a)的值
a+b+c=10,且1/(a+1)+1/(b+c)+1/(a+c)=14/17,求c/(a+b)+a/(b+c)+b/(c+a)的值
a+b+c=10,且1/(a+1)+1/(b+c)+1/(a+c)=14/17,求c/(a+b)+a/(b+c)+b/(c+a)的值
c/(a+b)+a/(b+c)+b/(c+a)=[10-(a+b)]/(a+b)+[10-(b+c)]/(b+c)+[10-(c+a)]/(c+a)=10/(a+1)+10/(b+c)+10/(a+c)-3=10[1/(a+1)+1/(b+c)+1/(a+c)]-3=140/17-3=89/17