若x+y+z=nπ,求证:tanx+tany+tanz=tanxtanytanz成立.用此结论来证明恒等式用此结论来证明恒等式:(a+b)/(a-b)+(c+d)/(c-d)+(ac-bd)/(ad+bc)=((a+b)(c+d)(ac-bd))/((a-b)(c-d)(ad+bc))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 11:43:45
若x+y+z=nπ,求证:tanx+tany+tanz=tanxtanytanz成立.用此结论来证明恒等式用此结论来证明恒等式:(a+b)/(a-b)+(c+d)/(c-d)+(ac-bd)/(ad+bc)=((a+b)(c+d)(ac-bd))/((a-b)(c-d)(ad+bc))
xRN@+/} QUEM 0b(Chy)Bv0in>9ޙd&:6ʢN=ξ09,\ NC)Y'XNyHŴё"jDQDMՂnt fGdX 'a~YMگ "|-J\LY Յp8N(i^YCnѢ wsW|{'2~ t#sz:‰F&e~4\"eK[T f╉7q2iF7llh"-͔y:>4m#03GJPͮ1!j~oϛGt ;c+c?HcZ})>Y

若x+y+z=nπ,求证:tanx+tany+tanz=tanxtanytanz成立.用此结论来证明恒等式用此结论来证明恒等式:(a+b)/(a-b)+(c+d)/(c-d)+(ac-bd)/(ad+bc)=((a+b)(c+d)(ac-bd))/((a-b)(c-d)(ad+bc))
若x+y+z=nπ,求证:tanx+tany+tanz=tanxtanytanz成立.用此结论来证明恒等式
用此结论来证明恒等式:(a+b)/(a-b)+(c+d)/(c-d)+(ac-bd)/(ad+bc)=((a+b)(c+d)(ac-bd))/((a-b)(c-d)(ad+bc))

若x+y+z=nπ,求证:tanx+tany+tanz=tanxtanytanz成立.用此结论来证明恒等式用此结论来证明恒等式:(a+b)/(a-b)+(c+d)/(c-d)+(ac-bd)/(ad+bc)=((a+b)(c+d)(ac-bd))/((a-b)(c-d)(ad+bc))
1)容易证明:如果a=0或者b=0,(直接带进去算一下)结论都成立.由于字母对称性可知c=0或者d=0结论仍然成立.
2)如果a,c,b,d都不为零.令tan x=b/a,tany=d/c
那么左边=tan(x+(π/4))+tan(y+(π/4))+tan((π/2)-x-y)
根据题目中的已知等式可知:
左边=tan(x+(π/4))*tan(y+(π/4))*tan((π/2)-x-y)=右边