用换元积分法求∫dx/(x^2+6x+10) 我知道答案是arctan(x+3),所以需要具体的解答过程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:20:41
用换元积分法求∫dx/(x^2+6x+10) 我知道答案是arctan(x+3),所以需要具体的解答过程,
x){>eųEO[/_66=XRQgmVmhcK_6N~vʳfO,J.I{BNg Ov/}9ŲƧ۟|Vˋ勁^o[&HXjb~ a-D$Zh&P0, CRPx{I-PTQԄAU̅8S(_\g w*mCALI9H2M(}|%

用换元积分法求∫dx/(x^2+6x+10) 我知道答案是arctan(x+3),所以需要具体的解答过程,
用换元积分法求∫dx/(x^2+6x+10)
我知道答案是arctan(x+3),所以需要具体的解答过程,

用换元积分法求∫dx/(x^2+6x+10) 我知道答案是arctan(x+3),所以需要具体的解答过程,
∫dx/(x^2+6x+10)=∫dx/[(x+3)^2+1]
=∫d(x+3)/[(x+3)^2+1] 令t=x+3
=∫dt/(t^2+1)
=arctant+C
=arctan(x+3)+C

x^2+6x+10 = (x+3)^2 + 1
∫dx/(x^2+6x+10) = ∫d(x+3)/((x+3)^2 + 1) = arctan(x+3 ) + C