求极值 大一微积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:04:07
xSn@Q"[Q<`EEм\RAXhWEx/P
L_0'G͝{86To_:x]dRgW5Il6&ywM@^[".v-Õa+r¶ L`1
"k\S>lN꧟p`o/z_~Gڟɞj b5 7*L]eIBtq0 ժN wJTk]Ez_o)_~ŠZ3&,/|wZpg`T=vH
求极值 大一微积分
求极值 大一微积分
求极值 大一微积分
你求导数怎么用这么奇怪的递归函数?
x^x = e^(xlnx)
d(x^x)/dx = de^(xlnx)/dx = e^(xlnx) (lnx + 1) = x^xlnx + x^x
d((1-x)^(1-x))/dx = -(1-x)^(1-x)ln(1-x) - (1-x)^(1-x)
df(x)/dx = (1-x)^(1-x)d(x^x)/dx + x^xd(1-x)^(1-x)/dx
= (1-x)^(1-x)(x^xlnx + x^x)+x^x[-(1-x)^(1-x)ln(1-x) - (1-x)^(1-x)] =0
(1-x)^(1-x)(x^xlnx + x^x) = x^x[(1-x)^(1-x)ln(1-x) +(1-x)^(1-x)]
(1-x)^(1-x)(lnx +1) = (1-x)^(1-x)ln(1-x) +(1-x)^(1-x)
lnx = ln(1-x)
显然x=0.5时取极值