第二十四题(解题思路也行)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:29:32
第二十四题(解题思路也行)
xRjA}( ٯI~>~eWmv#($%J FVK MBeu lŶAZX{gN]Q;|sf[х])׮k^^C$זgc^d"#

第二十四题(解题思路也行)
第二十四题(解题思路也行)

 


第二十四题(解题思路也行)
∵∠DCE=90°(已知),
  ∴∠ECB+∠ACD=90°,
  ∵EB⊥AC,
  ∴∠E+∠ECB=90°(直角三角形两锐角互余).
  ∴∠ACD=∠E(同角的余角相等).
  ∵AD⊥AC,BE⊥AC(已知),
  ∴∠A=∠EBC=90°(垂直的定义)
在Rt△ACD和Rt△BEC中,
  ∠A=∠EBC
  ∠ACD=∠E
  CD=EC
∴Rt△ACD≌Rt△BEC(AAS).
  ∴AD=BC,AC=BE(全等三角形的对应边相等),
  ∴AD+AB=BC+AB=AC.
  ∴AD+AB=BE.