若tan(x+y)=2tanx,求证3siny=sin(2x+y).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 21:03:19
若tan(x+y)=2tanx,求证3siny=sin(2x+y).
x){ѽ$1 {:m g^o4.̫@i#MR> lȴ%@3]d3ӄdW߳끬D`5F@C+lMd"W7maB*5u+4m MΆ'UF 1uH8

若tan(x+y)=2tanx,求证3siny=sin(2x+y).
若tan(x+y)=2tanx,求证3siny=sin(2x+y).

若tan(x+y)=2tanx,求证3siny=sin(2x+y).
令a=x+y,则条件变为
tan(x+y)=2tanx于是tana=2tanx,
2sinacosx=4cosasinx
3sinacosx-3cosasinx=sinacosx+cosasinx
3sin(a-x)=sin(a+x)
所以
3siny=sin(2x+y)