函数f(x)=sin2x·sin(π/6)-cos2x·cos(5π/6)在[-π/2,π/2]上的单调递增区间为?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:10:59
函数f(x)=sin2x·sin(π/6)-cos2x·cos(5π/6)在[-π/2,π/2]上的单调递增区间为?
x){ھ iřyF) f  a y:gE.e"bz>i_6LzhӞ]/oycMR> /۟o}ӟvlxg=tl2"tOdW߳럭]t2tu6<ٽl~qAbq\

函数f(x)=sin2x·sin(π/6)-cos2x·cos(5π/6)在[-π/2,π/2]上的单调递增区间为?
函数f(x)=sin2x·sin(π/6)-cos2x·cos(5π/6)在[-π/2,π/2]上的单调递增区间为?

函数f(x)=sin2x·sin(π/6)-cos2x·cos(5π/6)在[-π/2,π/2]上的单调递增区间为?
直接得到:F(x)=sin(2X+π/3),由于是正弦函数,所以-π/2=