设函数f(x)=ax^2+bx+1(a,b∈R) 1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式2、在1的条件下,当x∈[2,2]时,g(x)=f(x)-kx是单调函数,求实数k
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 05:47:57
xRMO@+!lnhXh+jET5PβR4@x{3hٴaŷ21;$MvBX|H}urP5X Ϭ>Ԏgxϭsؽ*~?'yQ6h(@B?f
N:R$Rl{+[.QAK3g&Wl\4)'y8x֒ٴ7C,h،fH;zߍ}YO
P1bNRe8?ņi}μz/{,|۩য-.`)&p5u%.P.cCt(t?Άh=b|ru vƏ"%O54ꠞ.TBI_od)Pb9%gtZ
设函数f(x)=ax^2+bx+1(a,b∈R) 1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式2、在1的条件下,当x∈[2,2]时,g(x)=f(x)-kx是单调函数,求实数k
设函数f(x)=ax^2+bx+1(a,b∈R) 1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式
1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式
2、在1的条件下,当x∈[2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
设函数f(x)=ax^2+bx+1(a,b∈R) 1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表达式2、在1的条件下,当x∈[2,2]时,g(x)=f(x)-kx是单调函数,求实数k
1、因为任意实数x,f(x)≥0恒成立,所以a>0.△=0
又因为f(-1)=0,所以有 a-b+1=0,b^2-4a=0,解出a=1,b=2
所以f(x)=x^2+2x+1(这个问题中条件任意实数x,f(x)≥0恒成立,应理解为一个二次函数的值域为≥0时,只能是开口向上,且与x轴只有一个交点,这样才能有足够的条件求解a,b)
2、g(x)=x^2+(2-k)x+1,因为当x∈[-2,2]时,g(x)=f(x)-kx是单调函数
所以(k-2)/2≥2,k≥6
设函数f(x)=ax^2+bx+c (a
设函数f(x)=InX-1/2ax^2-bx令F(X)=f(x)+1/2ax^2+bx+a/x(0
设函数f(x)=ax^2+bx+c(a>0),已知1/2
设函数f(x)=1/3ax^3+bx^2+cx(a
设函数f(x)=ax²+bx+c(a
设函数f(x)=1/3*ax;+bx;+cx(a
设函数f(x)=ax²+2bx+c(a
设三次函数f(x)=ax^3+bx^2+cx+d(a
设函数f(x)=根号下(ax^2+bx+c)(a
设函数f(x)=根号(ax^2+bx+c) (a
设三次函数f(x)=ax^3+bx^2+cx+d(a
设函数F(X)=根号AX^2+BX+C(A
设函数f(x)=根号下(ax^2+bx+c)(a
设函数f(x)=根号下(ax^2+bx+c)(a
设函数f(x)=根号下(ax^2+bx+c)(a
设函数f(x)=√(ax^2+bx+c)(a
设函数F(X)=根号AX^2+BX+C(A
设函数f(x)=根号下(ax^2+bx+c)(a