【苦逼的文科生做高数】用极限定义证明下列各式1.lim n趋近于无穷 (2n^2+1)/(3n^2+1)=2/32.lim n趋近于无穷 (9n^3-1)/(5n^4+5n-1)=03.lim x趋近于1/2 (6x^2-7x+2)/(2x-1)=-1/24.lim x趋近于-2 (8x^3+27)/(4x^2-6x+9)=-15.l

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:45:31
【苦逼的文科生做高数】用极限定义证明下列各式1.lim n趋近于无穷 (2n^2+1)/(3n^2+1)=2/32.lim n趋近于无穷 (9n^3-1)/(5n^4+5n-1)=03.lim x趋近于1/2   (6x^2-7x+2)/(2x-1)=-1/24.lim x趋近于-2     (8x^3+27)/(4x^2-6x+9)=-15.l
xJA_%P(6d7@_@ H{3?jML-hmVmMzO/5$gϜ͙Myθw?T/;gk|k7o>7W_ 8;7f=we{n/ؗk$?3=N]X",PAWdL*jEQY/Pnc"+LFИH%&*`0@SKh #̤R"iLE5?S~L00CCC">j܇>Ki1#7.QfubF~D xG.=H hi2SR]mY3}'^6I>:o_\8 k@(a lm?"1@0ÂGDI.c[[KM쵭V'Wx*XGD:N>lo: :yK˘t9M 0+߀`IFki';7Hu(2(0:[lդ=-*` r‡B%! 0I|w .AO^bi{Z24:0T\4"|O b$7\A/X,n

【苦逼的文科生做高数】用极限定义证明下列各式1.lim n趋近于无穷 (2n^2+1)/(3n^2+1)=2/32.lim n趋近于无穷 (9n^3-1)/(5n^4+5n-1)=03.lim x趋近于1/2 (6x^2-7x+2)/(2x-1)=-1/24.lim x趋近于-2 (8x^3+27)/(4x^2-6x+9)=-15.l
【苦逼的文科生做高数】用极限定义证明下列各式
1.lim n趋近于无穷 (2n^2+1)/(3n^2+1)=2/3
2.lim n趋近于无穷 (9n^3-1)/(5n^4+5n-1)=0
3.lim x趋近于1/2 (6x^2-7x+2)/(2x-1)=-1/2
4.lim x趋近于-2 (8x^3+27)/(4x^2-6x+9)=-1
5.lim x趋近于-1 (x^2+1)=2
6.lim x趋近于2 (x^3-3)=5
7.lim x趋近于无穷 (x^6+3x^2)/(2x^6+3)=1/2
8.lim x趋近于正无穷 (x^7+10x^6+1)/(3x^5-1)=无穷

【苦逼的文科生做高数】用极限定义证明下列各式1.lim n趋近于无穷 (2n^2+1)/(3n^2+1)=2/32.lim n趋近于无穷 (9n^3-1)/(5n^4+5n-1)=03.lim x趋近于1/2 (6x^2-7x+2)/(2x-1)=-1/24.lim x趋近于-2 (8x^3+27)/(4x^2-6x+9)=-15.l
证明:1.对任意的ε>0,解不等式│(2n²+1)/(3n²+1)-2/3│=1/(3n²+1)<1/n²<ε, 得n>1/√ε,取N≥[1/√ε]
于是,对任意的ε>0,总存在自然数N≥[1/√ε].当n>N时,有│((2n²+1)/(3n²+1)-2/3│<ε
即lim(n->∞)[(2n²+1)/(3n²+1)]=2/3;
2.对任意的ε>0,解不等式│(9n³-1)/(5n^4+5n-1)│<│(10n³)/(5n^4)│=2/n<ε,得n>2/ε,取N≥[2/ε]
于是,对任意的ε>0,总存在自然数N≥[2/ε].当n>N时,有│(9n³-1)/(5n^4+5n-1)│<ε
即lim(n->∞)[(9n³-1)/(5n^4+5n-1)]=0;
3.对任意的ε>0,解不等式│(6x²-7x+2)/(2x-1)+1/2│=3│x-1/2│<ε,得│x-1/2│<ε/3,取δ≤ε/3
于是,对任意的ε>0,总存在δ≤ε/3.当0<│x-1/2│<δ时,有│(6x²-7x+2)/(2x-1)+1/2│<ε
即lim(x->1/2)[(6x²-7x+2)/(2x-1)]=-1/2;
4.对任意的ε>0,解不等式│(8x^3+27)/(4x^2-6x+9)+1│=2│x+2│<ε,得│x+2│<ε/2,取δ≤ε/2
于是,对任意的ε>0,总存在δ≤ε/2.当0<│x+2│<δ时,有│(8x^3+27)/(4x^2-6x+9)+1│<ε
即lim(x->-2)[(8x^3+27)/(4x^2-6x+9)]=-1;
5.令│x+1│<3,则│x-1│<1
对任意的ε>0,解不等式│(x²+1)-2│=│(x+1)(x-1)│<│x+1│<ε,得│x+1│<ε,取δ≤min(3,ε)
于是,对任意的ε>0,总存在δ≤min(3,ε).当0<│x+1│<δ时,有│(x²+1)-2│<ε
即lim(x->-1)(x²+1)=2;
6.令│x-2│<1,则(x+1)²<16
对任意的ε>0,解不等式│(x³-3)-5│=│(x-2)((x+1)²+3)│<16│x-2│<ε,得│x-2│<ε/16,取δ≤min(1,ε/16)
于是,对任意的ε>0,总存在δ≤min(1,ε/16).当0<│x-2│<δ时,有│(x³-3)-5│<ε
7. 对任意的ε>0,解不等式│(x^6+3x^2)/(2x^6+3)-1/2│=│(6x²-3)/(2x^6+3)│<│(6x²)/(2x^6)│=3/│x│^4<ε,得│x│>(3/ε)^(1/4),取A≥(3/ε)^(1/4).
于是,对任意的ε>0,总存在A≥(3/ε)^(1/4).当│x│>A时,有│(x^6+3x^2)/(2x^6+3)-1/2│<ε
即lim(x->∞)[(x^6+3x^2)/(2x^6+3)]=1/2;
8. 对任意的M>0,解不等式│(x^7+10x^6+1)/(3x^5-1)│>│x^7/(3x^5)│=x²/3>M,得x>√(3M),取A≥√(3M).
于是, 对任意的M>0,总存在A≥√(3M).当x>A时,有│(x^7+10x^6+1)/(3x^5-1)│>M
    即lim(x->+∞)[((x^7+10x^6+1)/(3x^5-1)]=∞.