已知P>0,q>0,p,q的等差中项为1/2,且x=p+1/p,y=q+1/q,则x+y的最小值为啥子p,q的等差中项为1/2,即p+q=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 11:42:03
已知P>0,q>0,p,q的等差中项为1/2,且x=p+1/p,y=q+1/q,则x+y的最小值为啥子p,q的等差中项为1/2,即p+q=1
xQJ@~be|}襽E0@kZhB@ ئ/#;9MCawgvof5F!~ί%븘qxׯ

已知P>0,q>0,p,q的等差中项为1/2,且x=p+1/p,y=q+1/q,则x+y的最小值为啥子p,q的等差中项为1/2,即p+q=1
已知P>0,q>0,p,q的等差中项为1/2,且x=p+1/p,y=q+1/q,则x+y的最小值
为啥子p,q的等差中项为1/2,即p+q=1

已知P>0,q>0,p,q的等差中项为1/2,且x=p+1/p,y=q+1/q,则x+y的最小值为啥子p,q的等差中项为1/2,即p+q=1
p,q的等差中项为1/2,即p+q=1
所以x+y=p+1/p+q+1/q=(p+q)+(1/p+1/q)=1+(1/p+1/q)
而1/p+1/q=(p+q)/pq=1/pq
由于P>0,q>0,所以利用公式,则有1=p+q>=2√(pq),
所以pq=4,即1/p+1/q>=4,所以x+y>=5,即其最小值为5
有问题可以发消息给我

1吧,具体的不会写