y(x + y + 1) dx + (x + 2y) dy = 0:运用正合方程式求解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:24:16
y(x + y + 1) dx + (x + 2y) dy = 0:运用正合方程式求解
xRMo@+ jG>V^z9dj/7ꈤM4%DJj! O {*=;3o{3V$9 +{;K" H,ܿdm(-:+q1*/dkEMrv̚{ɣmRmW6Z

y(x + y + 1) dx + (x + 2y) dy = 0:运用正合方程式求解
y(x + y + 1) dx + (x + 2y) dy = 0:运用正合方程式求解

y(x + y + 1) dx + (x + 2y) dy = 0:运用正合方程式求解
由题意设M(x,y)=y(x + y + 1),N(x,y)= (x + 2y),下述中a为偏导
则由此方程的正合可以知道有:a[M(x,y)]/ay=x+2y+1,a[N(x,y)]/ax=1
即有x+2y+1=1,即x+2y=0
又 ∫N(x,y)dx=y^2+xy+V(x)
则有y(x + y + 1) =a[y^2+xy+V(x)]/ax
求得V(x)的导数为xy+y^2
也即:V(x)=1/2x^2y+xy^2+C1
进而有y^2+xy+1/2x^2y+xy^2+C1=C2
即通解为:y^2+xy+1/2x^2y+xy^2=C,C=C2-C1,①
x+2y=0 ②
方程的解为①②的联立!

盛大感

对应的齐次方程的通解为 C1e^x+C2e^2x
后面答案说非齐次方程的通解为y*=Cxe^入x,代入得C=-2
为什么可以这样设通解?
不是应该设特解y*=x(b0x+b1)e^x,然后代入么,虽然我化简不出