请给我仔细讲解一下下面这道题:(1)一段公路的坡度为1:3,某人沿这段公路路面前进100m,那么他上升的最大高度是多少?图是什么?求各位前辈们在讲这道题时,给配上图片或者描述一下图!)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:01:41
请给我仔细讲解一下下面这道题:(1)一段公路的坡度为1:3,某人沿这段公路路面前进100m,那么他上升的最大高度是多少?图是什么?求各位前辈们在讲这道题时,给配上图片或者描述一下图!)
请给我仔细讲解一下下面这道题:
(1)一段公路的坡度为1:3,某人沿这段公路路面前进100m,那么他上升的最大高度是多少?
图是什么?求各位前辈们在讲这道题时,给配上图片或者描述一下图!)
(2)在Rt△ABC中,延长斜边AB到D点,使BD=AB,连接CD,若tan∠BCD=1/3 ,则tanA =( )
请给我仔细讲解一下下面这道题:(1)一段公路的坡度为1:3,某人沿这段公路路面前进100m,那么他上升的最大高度是多少?图是什么?求各位前辈们在讲这道题时,给配上图片或者描述一下图!)
1、我们常说,平顶屋面的坡度是3:100,也可说成 3%
屋面天沟坡度是1.5%,即1.5:100 .
通俗的说,就是坡高与坡底的比值.
2、AB即三角形的外接圆直径,我们可以设AB等于R或1
为便于书写,设AB=1
那么,AC=1*cosA=cosA,BC=sinA,AD=2
在△BCD中用余弦定理求得
DC²=sin²A + 1 - 2sinAcos∠CBD
=sin²A + 1 - 2sinA(-sinA)
=1 + 3sin²A
再在△ACD中利用余弦定理求AD,得到
2²=cos²A + DC² - 2cosA*DC*cos∠ACD (注:cos∠ACD = -sin∠BCD= -1/√10)
4 =cos²A + (1 + 3sin²A) - 2cosA*√(1 + 3sin²A) ×(-1/√10)
化简得到:2-2sin²A =2cosA √[(1 + 3sin²A)/10]
解得 : sinA=3/√13
则 tanA=3/2
关键是设AB为定值1,将∠A看作变量,再利用2个余弦定理,解出sinA.