一道数学题:当A、B、C取何值时,A/x-1+B/x+1+C/x-2=3x-9/(x^-1)(x-2).
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:32:46
xQJ1283(&$?QRtBjԝb`if:/xb@ȹ'snR~2r-?N+EM=,`K}y3uōͩ".TaKQĵԖߖ|'>uiԕit4`KT(zPYTQ쒱j8y{LZ{s5L;U[_p,d6̷DZ'd9C)lɈУA>{$^8l].ZVR3+$0'Z >#
一道数学题:当A、B、C取何值时,A/x-1+B/x+1+C/x-2=3x-9/(x^-1)(x-2).
一道数学题:当A、B、C取何值时,A/x-1+B/x+1+C/x-2=3x-9/(x^-1)(x-2).
一道数学题:当A、B、C取何值时,A/x-1+B/x+1+C/x-2=3x-9/(x^-1)(x-2).
左边通分的[A(X+1)(X-2)+B(X-1)(X-2)+C(X^2-1)]/(x^2-1)(x-2)=3x-9/(x^2-1)(x-2),所以要求分子相等,即A+B+C=0,-A-3B=3,-2A+2B-C=9,A=3,B=-2,C=-1
A/x-1+B/x+1+C/x-2=A(x+1)(x-2)+B(x-1)(x+2)+C(x-1)(x+1)/(x+1)(x-1)(x-2).
=x^2(A+B+C)+x(B-A)+(2B-2A-C)/(x^2-1)(x-2)=3x-9/(x^-1)(x-2).
所以:A+B+C=0
B-A=3
2B-2A-C=-9
解得...
全部展开
A/x-1+B/x+1+C/x-2=A(x+1)(x-2)+B(x-1)(x+2)+C(x-1)(x+1)/(x+1)(x-1)(x-2).
=x^2(A+B+C)+x(B-A)+(2B-2A-C)/(x^2-1)(x-2)=3x-9/(x^-1)(x-2).
所以:A+B+C=0
B-A=3
2B-2A-C=-9
解得:A=-9,B=-6,C=15
收起