如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:56:32
xRMOP+I5}~<Ғkf1}U`
bYCbF]ѭ\ Q;db9/{˕xf\NOpxEp"ʚfW>o(/r:bqG?\fQbs!~}wXh
\~l?Ѽ߫vD'r eE'i!wM1/Bc<_"%zX
.3昻+R ʕ.p0v,aB /B!YmY;ĵRb Qԝ6s`du "q%,KE+?ߟX4ԊtF+іv,vҋowGZT:Ä
wvZ2?Ãýuqxc זzK냪Lt
如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.
如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.
如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.
如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.如图,点BAG上,点CAH上,BP平分∠GBC,CP平分∠HCB,PD⊥AG于DPE⊥AH于E求证:PD=PE.
作PQ⊥BC于Q,
∠PBD=∠PBQ,∠PDB=∠PQB=90°,PB=PB
易得RT△PDB≌RT△PQB [AAS]
PD=PQ
同理
RT△PEC≌RT△PQC [AAS]
PE=PQ
∴PD=PE