如图,过平行四边形ABCD的对角线的交点O做直线EF,分别交AD与E,交BC于F,G、H分别为OB,OD的中点,求证四

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:00:25
如图,过平行四边形ABCD的对角线的交点O做直线EF,分别交AD与E,交BC于F,G、H分别为OB,OD的中点,求证四
xS]OP+w X b?`i &.KvX#3pc:YS]sZ {K(\yUy?9֛BQ0nWP[1V3njM]m-T%Ba$/J!ND_n!znM8uX4 ~%}Yn"s7ϼ&ɸ-$MRO6)=C~IbB>Iv;MMrd=Jr'$)$JMqWt%*ư8tL.J'Cd)ˀ8S ;pvcPN&ƺ͸DA{ qPgj̔l\?6n()b( 4GdhzG;MrS6^on\i%竽2ZVtЊJ"0w{{^ V6SBuG7PӟT땺qrH>F*a6 B^WGB{ݚQ+0 'KG\'|AѪw?0d| |~AUY ޭ~W0C<?\o3sQ{_9X#1ryrswĹSN}ǥ".Z!HhhZW MeWi8Vuo ,"svZ!p mVC/ {Q{vɌ[Jah+uTF93EՁ%clCf3)]o

如图,过平行四边形ABCD的对角线的交点O做直线EF,分别交AD与E,交BC于F,G、H分别为OB,OD的中点,求证四
如图,过平行四边形ABCD的对角线的交点O做直线EF,分别交AD与E,交BC于F,G、H分别为OB,OD的中点,求证四

如图,过平行四边形ABCD的对角线的交点O做直线EF,分别交AD与E,交BC于F,G、H分别为OB,OD的中点,求证四
分析:对角线互相平分的四边形是平行四边形,在本题中,OG=OH可以根据线段之间的等量关系求出,而OE=OF则需通过证明全等得出.解本题则可利用这一判定,利用全等证明OE=OF即可.
四边形GEHF是平行四边形;理由如下:
∵四边形ABCD为平行四边形,
∴BO=DO,AD=BC且AD∥BC.
∴∠ADO=∠CBO.
又∵∠EOD=∠FOB,
∴△EOD≌△FOB(ASA).
∴EO=FO.
又∵G、H分别为OB、OD的中点,
∴GO=HO.
∴四边形GEHF为平行四边形.
点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.

如图,在平行四边形ABCD中,过对角线的交点P任作一条直线EF 如图,O为平行四边形ABCD的对角线的交点 如图,过平行四边形ABCD的对角线交点O作直线EF,GH分别交各边于点E,F,G,H.求证:四边形EGFH是平行四边形.PS: 如图,过平行四边形ABCD的对角线交点O作直线EF,CH分别交各边于点E,F,G,H,求证:四边形EFGH是平行四边形 如图,平行四边形ABCD中,EF过对角线的交点O,AB=4,AD=3OF=1.3,求四边形BCEF的周长 如图,在平行四边形ABCD中,过对角线的交点O直线交CB,AD的延长线于E和F.求证:BE=DF 如图,在平行四边形ABCD中,EF过对角线的交点O.若AB=4,AD=3,OF=1.3,求梯形AFED的周长 如图 o为四边形abcd对角线的交点,过点o的直线ef分别交ad,bc于f,e两点.求证四边形aecf是平行四边形 已知:如图,在平行四边形ABCD中,过对角线的交点O作直线EF交AD于E,交BC于F,求证:四边形AECF是平行四边 如图,过平行四边形ABCD的对角线交点O作直线EF,CH分别交各边于点E,F,G,H,求证:四 平行四边形对角线交点的性质?如题 如图,过平行四边形ABCD对角线的交点o作两条互相垂直的直线EF,GH,分别与平行四边形ABCD的四边交于E,F,G,H,试说明:四边形EGFH为菱形 已知,如图,过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG,FH于平行四边形ABCD各边分别相交于点E,F,G,H.试说明:四边形EFGH是菱形 如图,过平行四边形ABCD的对角线交点O作互相垂直的两条线EG、FH与平行四边形ABCD各边分别相交与点E、F、G、H 求证:四边形EFGHSH是菱形? 如图,已知在平行四边形ABCD中,EF过两条对角线的交点O,若AB=5,BC=8,OE=3,求四边形EFCD的周长中间的交点是O 如图1,点O是平行四边形ABCD的对角线AC于BD的交点,四边形OCDE是平行四边形.求证:OE与AD互相平分 如图,在平行四边形ABCD中,M,N分别是OA,OC的中点,O为对角线AC与BD的交点,求证:四边形BMDN是平行四边形 如图,在平行四边形ABCD中,M,N分别是OA,OC的中点,O为对角线AC与BD的交点,求证四边形BMDN是平行四边形