利用导数证明:当x>0时,ln(1+x)>x-x/2.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:26:09
利用导数证明:当x>0时,ln(1+x)>x-x/2.
x){ڱOy6uËf33x6}NN=tE:@I*ҧ;j J!PVhC gbݾ4 M[*@R궆@VBPSL*kvl:Pγ.}/Wz vi: am `; @nJ^/.H̳*qY

利用导数证明:当x>0时,ln(1+x)>x-x/2.
利用导数证明:当x>0时,ln(1+x)>x-x/2.

利用导数证明:当x>0时,ln(1+x)>x-x/2.
证明:ln(1+x)>x-x/2 即证明ln(1+x)-x+x/2>0 设f(x)=ln(1+x)-x+x/2 f(x)'=1/(1+x)-1+x=(x+1)/(x+1) 当x>0时,f'(x)>0,是增函数.f(x)>f(0),f(0)=ln(1+0)-0+0/2=0 f(x)>0 即ln(1+x)-x+x/2>0 ln(1+x)>x-x/2