急求人教版八年级上册知识点总结:全等三角形...

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:19:45
急求人教版八年级上册知识点总结:全等三角形...
xXNI/AȄ<$;$Q45 0cmv#ͧ@WW_sv 2RD[y{= Fomlwu9{`|gj:׿XOF7kzbbb~gO4ƞްvWj̷ah;χѭ#\-D10a®(qdܩzj!rf%R,u a/FWc^*ge:Ү)!KGu6f44vɀQVDxKܜY*8&j;qfk͍O+&oCZ&XamI&UrRH*=\Bq^v_4㈫V~Dsb.hjweP3%6:1ab &eYu^Iu)e:T̬/]#7P8rG6p7>3vnejOE⥴C)g sH-^i'q{Q$1'zysssx хc<3_|oF#k7)F7o%jSm#|4#YI92#F˅h_($h\uKUq Q|j'\<`);Cz#'Q(렴mUMP45!BŶV<+e(n ]$Ì>zZP!;XȮhQEj fk}_nfQqﰰە=?<~h9[[[V淵-li+?16:beN;xrK jDhW$:H Fh ̳5E(1zS곥>+$|,%gȲrSbԈA^7&U7&%s98 [p\ 圌%C[h"C X*̹ؽV5G@Z-Jg{0ŖE>mmW8/_84a(5x. #KF[S_֭t, … V O`PT4 Obie.]wr_>?H8"p{w49'W,NӗY`l{5&ʽRlL RN.#Vft[y4cBoSNPrgT1W7}|(>UW"o m!Lk!8F Լ< +.| a׋W ],Qq#N809 X׌[jn~0"$d6y$'pD.ŏOb:B nRvUXP xsyRsJ{/B%H/ב@[Cf0Fg~#!9#?ׄWvsc4]l%#G5)

急求人教版八年级上册知识点总结:全等三角形...
急求人教版八年级上册知识点总结:全等三角形...

急求人教版八年级上册知识点总结:全等三角形...
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.
(3)有公共边的,公共边一定是对应边.
(4)有公共角的,角一定是对应角.
(5)有对顶角的,对顶角一定是对应角.
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因.
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”).
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理.
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状.
1.全等三角形的对应角相等.
2.全等三角形的对应边相等
3.全等三角形的对应顶点位置相等.
4.全等三角形的对应边上的高对应相等.
5.全等三角形的对应角的角平分线相等.
6.全等三角形的对应中线相等.
7.全等三角形面积相等.
8.全等三角形周长相等.
9.全等三角形可以完全重合.
其实百科上很详细的,学好全等只需牢记所有判定情况,避免边边角(SSA)和角角角(AAA)
的情况,【已知直角三角形的话边边角可以用,能证明】
多练习,学会总结就好了~

全等三角形复习
  
  一、知识点:
  1. 全等三角形:
  ⑴全等形:能够完全重合的两个图形叫全等形。
  ⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
  ⑶全等三角形的性质:全等三角形对应边相等,对应角相等。
  2.三角形全等的性...

全部展开

全等三角形复习
  
  一、知识点:
  1. 全等三角形:
  ⑴全等形:能够完全重合的两个图形叫全等形。
  ⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
  ⑶全等三角形的性质:全等三角形对应边相等,对应角相等。
  2.三角形全等的性质:
  全等三角形的识别:SAS,ASA,AAS,SSS,HL(直角三角形)
  3.角平分线的性质:
  ⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。
  ⑵角平分线的判定:到角两边距离相等的点在角的平分线上。
  ⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
  二、经验与提示
  1.寻找全等三角形对应边、对应角的规律:  
  ① 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
  ② 全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.
  ③ 有公共边的,公共边一定是对应边.
  ④ 有公共角的,公共角一定是对应角.
  ⑤ 有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
  2.找全等三角形的方法
  (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
  (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;
  (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
  (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
  3.角的平分线是射线,三角形的角平分线是线段。
  4.证明线段相等的方法:
  (1)中点定义;
  (2)等式的性质;
  (3)全等三角形的对应边相等;
  (4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。
  5.证明角相等的方法:
  (1) 对顶角相等;
  (2) 同角(或等角)的余角(或补角)相等;
  (3) 两直线平行,同位角、内错角相等;
  (4) 角的平分线定义;
  (5) 等式的性质;
  (6) 垂直的定义;
  (7) 全等三角形的对应角相等;
  (8) 三角形的外角等于与它不相邻的两内角和。随着知识的深化,今后还有其它的方法。
  6.证垂直的常用方法
  (1) 证明两直线的夹角等于90°;
  (2) 证明邻补角相等;
  (3) 若三角形的两锐角互余,则第三个角是直角;
  (4) 垂直于两条平行线中的一条直线,也必须垂直另一条。
  (5) 证明此角所在的三角形与已知直角三角形全等;
  (6) 邻补角的平分线互相垂直。
  7.全等三角形中几个重要结论
  (1) 全等三角形对应角的平分线相等;
  (2) 全等三角形对应边上的中线相等;
  (3) 全等三角形对应边上的高相等。

收起