若实数x,y,z满足x^2+y^2+z^2=1,则xy+yz+zx的取值范围是?[-1/2,1]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:38:13
xQN0FG+سm>$j%; ETbA$K#l7ֳwwfh/Wn\?ԦUyl^̔RNR73l\7řmnrL2 S'ٟ"CŬ TXj4I@GǝJÀވ`$(
R'1߬t?e<|,<{Mq(f GУU@pB>Jd4Y@^cRŇ{s1جmK*)
若实数x,y,z满足x^2+y^2+z^2=1,则xy+yz+zx的取值范围是?[-1/2,1]
若实数x,y,z满足x^2+y^2+z^2=1,则xy+yz+zx的取值范围是?
[-1/2,1]
若实数x,y,z满足x^2+y^2+z^2=1,则xy+yz+zx的取值范围是?[-1/2,1]
x^2+y^2+z^2-ab-ac-bc=1/2[(a-c)^2+(b-c)^2+(a-b)^2]
>=0
则1-(ab+bc+ac)>=0
ab+bc+ac=0
则 1+2(ab+bc+ac)>=0
ab+bc+ac
设xy+yz+zx=t
2[x^2+y^2+z^2-(xy+yz+zx)]=(x-y)^2+(x-z)^2+(y-z)^2
2(1-t)=(x-y)^2+(x-z)^2+(y-z)^2>=0
t<=1
2[x^2+y^2+z^2+xy+yz+zx]=(x+y)^2+(x+z)^2+(y+z)^2
2(1+t)=(x+y)^2+(x+z)^2+(y+z)^2>=0
t>=-1/2
所以t:[-1/2,1]