∫(0~π/2)(sinx)^3dx=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:39:41
∫(0~π/2)(sinx)^3dx=?
xN@_eE,+nKlZ,JDB;HZY 6j%ݽ#>v\ Nw $ٴkqP]'byK[C\Mt;O&Y?//E܃GyE c*1)v b s"CJR<D$ RI8Y,圄<ÂΘxQRY],AX 4R@HRДSJd,1W+4z~mwmҜVm֞S[wUiZU۹bH7E.Kk<]sf }륶z{Gqi\\e@hq}xs͹Foa;{><.?ϕ8

∫(0~π/2)(sinx)^3dx=?
∫(0~π/2)(sinx)^3dx=?

∫(0~π/2)(sinx)^3dx=?

∫(sinx)^3dx
=∫(sin²x)sinxdx
=-∫(1-cos²x)dcosx
=-cosx+(1/3)cos³x+C
=>
∫(0~π/2)(sinx)^3dx
=-cosx+(1/3)cos³x,(0~π/2)
=-(1+1/3)
=-4/3

Sin[x]^3 dx= -(1-Cos[x]^2)dCos[x]
所以
∫Sin[x]^3 dx = ∫(Cos[x]^2-1)dCos[x] = 1/3Cos[x]^3 - Cos[x] + C

用公式,答案:2/3