怎么用数学归纳法证明13的n次方减去6的n次方可以被7整除?13^n- 7^n is divisible by

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 07:57:36
怎么用数学归纳法证明13的n次方减去6的n次方可以被7整除?13^n- 7^n is divisible by
xRN@.y Ҥݴ'$]4"VBTqQ_`0Gc3SV'3KI:=sϽs|7*G\q~M[H-RyvIۿ{Rp}v%JY,􂰣=+~jCRɮXTBe $iv 5M)7rB^!Kd5'נ\#$bFcВprٗ(1*ɡP!q@da+o8<eZ+;󮽑O)IB&.كMǿkX1R6Ie?DE]L{R;nIqvJV }

怎么用数学归纳法证明13的n次方减去6的n次方可以被7整除?13^n- 7^n is divisible by
怎么用数学归纳法证明13的n次方减去6的n次方可以被7整除?13^n- 7^n is divisible by

怎么用数学归纳法证明13的n次方减去6的n次方可以被7整除?13^n- 7^n is divisible by
13^n-6^n,(n=1,2,3,……)
证明:数学归纳法
1,当n=1时,原式=13^n-6^n=13-6=7,可以被7整除
2,假设,n=m时,原式=13^m-6^m可以被7整除,
3,当n=m+1时,
原式=13^(m+1)-6^(m+1)
=13*13^m-6*6^m
=(7+6)*13^m-6*6^m
=7*13^m+6*13^m-6*6^m
=7*13^m+6(13^m-6^m)
因为,7*13^m可以被7整除、6(13^m-6^m)可以被7整除,
所以,原式也能被7整除.
综合1,2,3知:13^n-6^n可以被7整除.(n=1,2,3,……)

13减6不就是7吗?13的n次方减去6的n次方那理所当然也能被7整除吗