已知a,b,c 是不全相等的正数,求证(a 平方+1)(b平方+1)(c平方+1)>8abc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:29:20
已知a,b,c 是不全相等的正数,求证(a 平方+1)(b平方+1)(c平方+1)>8abc
x){}KutXdGgxgk?AƦHTxsi;6|(.&0"1)&H^V_ qFچI*L)%lmA Og/xc =Ovt=d?c ]d6z$d[C:^ Q 4YJ3z{+ т4F 17

已知a,b,c 是不全相等的正数,求证(a 平方+1)(b平方+1)(c平方+1)>8abc
已知a,b,c 是不全相等的正数,求证(a 平方+1)(b平方+1)(c平方+1)>8abc

已知a,b,c 是不全相等的正数,求证(a 平方+1)(b平方+1)(c平方+1)>8abc
(a^2+1)(b^2+1)(c^2+1)
>=2a*2b*2c=8abc
因为abc不全相等而上式等号成立的条件为a=b=c=1
所以等号不成立
所以(a^2+1)(b^2+1)(c^2+1)>8abc
^2代表平方,*代表乘号