已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则 A.a+b=0已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:23:50
已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则 A.a+b=0已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=1
x){}K*l3Ԕ -5*>~O΋it䤛өO;f*8%j'P(I Nz 7Tp mbj6 lbx?=ź]V` z>ViFF\M$@'e5l$D$I 35$*rj!b7V5:^;6X ЄČ;z͙t'{

已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则 A.a+b=0已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=1
已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则 A.a+b=0
已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则
A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=1

已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则 A.a+b=0已知fx=sin²(x+π/4),若a=f(lg5),b=f(lg1/5),则A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=1
结论:C
  理由:f(x)=(1/2)(1-cos(2x+π/2))
  =(1/2)sin(2x)+1/2
  a=(1/2)sin(2(lg5))+1/2
  b=(1/2)sin(2(lg(1/5)))+1/2
  =(1/2)sin(-2(lg5))+1/2
  =-(1/2)sin(2(lg5))+1/2
  所以 a+b=(1/2)sin(2(lg5))+1/2+(-(1/2)sin(2(lg5))+1/2)=1
  希望对你有点帮助!