若(4A-5B)^2+(C-3B)^4=0,则A:B:C=几多?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:10:10
若(4A-5B)^2+(C-3B)^4=0,则A:B:C=几多?
xJ@_%K&!3{"VL-ʪ)BTE,u^&3iWgfEsFt~%elu[[i[>\qL\0m2ݎhte$`4IZ][C)PhkIBp=8jYYLxҎ8{1oI5+{m_5(qO LB=mD1()y>#p?ӊj<*5ä,b \iG2r JP9nl؇Ee6h Rf#Ԩ*Tx-

若(4A-5B)^2+(C-3B)^4=0,则A:B:C=几多?
若(4A-5B)^2+(C-3B)^4=0,则A:B:C=几多?

若(4A-5B)^2+(C-3B)^4=0,则A:B:C=几多?
4A-5B=0 A:B=5:4
C-3B=0 B:C=1:3----------->B:C=4:12
所以A:B:C=5:4:12

12:15:5

(4A-5B)^2+(C-3B)^4=0,
因为偶次的数都是大于等于0
又2个偶次数相加=0 所以2个都等于0
所以4A-5B=0 C-3B=0
所以A=5/4B C=3B
A:B:C=5/4B:B:3B=5:4:12

思路:
首先一个数的偶此方都>=0的.得方程:(4A-5B)^2=0,(C-3B)^4=0
=>4A-5B=0,C-3B=0
=>A=5B/4,C=3B
=>A:B:C=5B/4:B:3B
=5:4:12