cos2π/7cos4π/7cos8π/7要过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:33:05
cos2π/7cos4π/7cos8π/7要过程
x)K/6:ߠoM~+mP_`gCiřy0eXkhuؚ&)5-+r pJa1Է/.H̳zڢQbYhNBR[ H7L I-k3aZ===lںe>0rZ#\-p IxU#>X#pה>?`;.kz6oPY-/}gXź}DD#G=VVoaP yąqH)a,aeHd&]7mt9[C0oֻQØLd|

cos2π/7cos4π/7cos8π/7要过程
cos2π/7cos4π/7cos8π/7要过程

cos2π/7cos4π/7cos8π/7要过程
8sin2π/7cos2π/7cos4π/7cos8π/7/(8sin2π/7)
=4sin4π/7cos4π/7cos8π/7/(8sin2π/7)
=2sin8π/7cos8π/7/(8sin2π/7)
=sin16π/7/(8sin2π/7)
=sin2π/7/(8sin2π/7)
=1/8

cos(2π/7)cos(4π/7)cos(8π/7)
=2sin(2π/7)cos(2π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=sin(4π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=2sin(4π/7)cos(4π/7)cos(8π/7)/【4sin(2π/7)】
=sin(8π/7)cos(8π/7)...

全部展开

cos(2π/7)cos(4π/7)cos(8π/7)
=2sin(2π/7)cos(2π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=sin(4π/7)cos(4π/7)cos(8π/7)/【2sin(2π/7)】
=2sin(4π/7)cos(4π/7)cos(8π/7)/【4sin(2π/7)】
=sin(8π/7)cos(8π/7)/【4sin(2π/7)】
=2sin(8π/7)cos(8π/7)/【8sin(2π/7)】
=sin(16π/7)/【8sin(2π/7)】
=sin(2π/7)/【8sin(2π/7)】
=1/8

收起

应该是cos(2π/7)cos(4π/7)cos(8π/7)吧?
如果是的话:
设A=cos(2π/7)cos(4π/7)cos(8π/7)
2Asin(2π/7)=2sin(2π/7)cos(2π/7)cos(4π/7)cos(8π/7)
2Asin(2π/7)=sin(4π/7)cos(4π/7)cos(8π/7)
4Asin(2π/7)=2sin(4π...

全部展开

应该是cos(2π/7)cos(4π/7)cos(8π/7)吧?
如果是的话:
设A=cos(2π/7)cos(4π/7)cos(8π/7)
2Asin(2π/7)=2sin(2π/7)cos(2π/7)cos(4π/7)cos(8π/7)
2Asin(2π/7)=sin(4π/7)cos(4π/7)cos(8π/7)
4Asin(2π/7)=2sin(4π/7)cos(4π/7)cos(8π/7)
4Asin(2π/7)=sin(8π/7)cos(8π/7)
8Asin(2π/7)=2sin(8π/7)cos(8π/7)
8Asin(2π/7)=sin(16π/7)
8Asin(2π/7)=sin[(14+2)π/7]
8Asin(2π/7)=sin(2π+2π/7)
8Asin(2π/7)=sin(2π/7)
8A=1
A=1/8
即:cos(2π/7)cos(4π/7)cos(8π/7)=1/8

收起