解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)要求用到规律:1/n(n+1)=1/n-1/(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:18:34
解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)要求用到规律:1/n(n+1)=1/n-1/(n+1)
xRN@.K(A(qq@nXRc(L|TMmӤhQR;RMӅ9wywzC%R$bpɬK&m߽p -% $ 7gޗ$ݙE #:dJd2m؍0B"юjЯ

解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)要求用到规律:1/n(n+1)=1/n-1/(n+1)
解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)
要求用到规律:1/n(n+1)=1/n-1/(n+1)

解方程1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)要求用到规律:1/n(n+1)=1/n-1/(n+1)
1/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)
1/(x-3)-1/(x-2)-1/(x-4)+1/(x-1)+1/(x-2)-1/(x-1)=1/(x-4)
1/(x-3)-1/(x-4)=1/(x-4)
1/(x-3)=2/(x-4)
2(x-3)=x-4
2x-6=x-4
x=2
检验是增根
所以原分式方程无解

1/(x-3)-1/(x-2)-[1/(x-4)-1/(x-1)]+1/(x-2)-1/(x-1)-1/(x-4)=0
1/(x-3)-2/(x-4)=0
x=2

1/(x-2)(x-3)=1/(x-3)-1/(x-2), 这个把等号右边通分计算下之后就知道了
3/(x-1)(x-4)=1/(x-4)-1/(x-1),
1/(x-1)(x-2)=1/(x-2)-1/(x-1)
可以消掉中间项,方程就很简单了

/(x-2)(x-3)-3/(x-1)(x-4)+1/(x-1)(x-2)=1/(x-4)
1/(x-3)-1/(x-2)-1/(x-4)+1/(x-1)+1/(x-2)-1/(x-1)=1/(x-4)
1/(x-3)-1/(x-4)=1/(x-4)
1/(x-3)=2/(x-4)
2(x-3)=x-4
2x-6=x-4
x=2

1/(x-3)-1/(x-2)-1/(x-4)+1/(x-1)+1/(x-2)-1/(x-1)=1/(x-4)
1/(x-3)-1/(x-4)=1/(x-4)
1/(x-3)=2/(x-4)
x=2