如图,梯形ABCD中,AB=AD,AD∥BC,∠ABC=2∠C=2α,点P在AD上,∠BPE=∠A,PE交CD于E点.①如图1若α=45°,求证PB=PE.②如图2若α为锐角,上结论是否仍然成立,并证明用八年级下册所学知识证,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 02:27:27
如图,梯形ABCD中,AB=AD,AD∥BC,∠ABC=2∠C=2α,点P在AD上,∠BPE=∠A,PE交CD于E点.①如图1若α=45°,求证PB=PE.②如图2若α为锐角,上结论是否仍然成立,并证明用八年级下册所学知识证,
xSmOP+ f-eJҮnl*l2pqxu*QNt@BXB6&~ʋ!b䇝ݗt^祮Hz |{6p;v}:Zq_:DC(ଯkvedWy~jy*`Dz  (FlP㖒) ?1J%i$i!G,Frss,\+JLț\f_Q`F(B|RD-f$21/F<21C𦈢)k"҆aFf4xdz &<*̝K4䒍G1Nb6(' ;˚&ⅉ;rdx  UcYY_8$PEI9 ^U7n<KMNNɠ2MS1|}tV[0D|㯓pHv ~pݮtjFkM= e("Xz1Tl= z U]HgB28Qcv60nZ9_ FXCB X"Sԗ˔F<(İ~R– "0P߀2f vz EDcԽ˚q Rј/

如图,梯形ABCD中,AB=AD,AD∥BC,∠ABC=2∠C=2α,点P在AD上,∠BPE=∠A,PE交CD于E点.①如图1若α=45°,求证PB=PE.②如图2若α为锐角,上结论是否仍然成立,并证明用八年级下册所学知识证,
如图,梯形ABCD中,AB=AD,AD∥BC,∠ABC=2∠C=2α,点P在AD上,∠BPE=∠A,PE交CD于E点.
①如图1若α=45°,求证PB=PE.
②如图2若α为锐角,上结论是否仍然成立,并证明
用八年级下册所学知识证,

如图,梯形ABCD中,AB=AD,AD∥BC,∠ABC=2∠C=2α,点P在AD上,∠BPE=∠A,PE交CD于E点.①如图1若α=45°,求证PB=PE.②如图2若α为锐角,上结论是否仍然成立,并证明用八年级下册所学知识证,
1
作DF//AB,交BC于 F
α=45°,ABC=90°,∠A,∠BPE = 90°
得DF垂直BC,
AB=AD,
ABFD是正方形
C=45°,∠CFD = 90°,∠CFD = 90° -45° =45°
连接BD.∠ADB = ∠BDF=45°.∠BDC = 45°+45°=90°
BPDE4点共圆
∠PDB = ∠PEB.=45°
所以 BPE 是等腰直角三角形
PB = PE
2
成立.
作图同1
ABFD是菱形.
∠BPE = A = 180 -2α
因为内错角相等,∠BDF=ABD = 1/2 ABC= α
因为同位角相等, DFC = ABC = 2α
CDF = 180 - 2α - α
BDC = BDF +CDF = α + 180 - 2α - α = 180 - 2α
BDC = BPE
BPDE4点共圆
∠PDB = ∠PEB.=α
PBD = 180- (180 - 2α + α )= α
所以 BPE 是等腰三角形
PB = PE