椭圆中求定值的问题(觉得自己是数学高手的来)A为椭圆上的一个动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,AF1=3AF2,设向量AF1=a F1B,向量AF2=b F2C,证明:当A点在椭圆上运动时a+b是定值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:11:15
椭圆中求定值的问题(觉得自己是数学高手的来)A为椭圆上的一个动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,AF1=3AF2,设向量AF1=a F1B,向量AF2=b F2C,证明:当A点在椭圆上运动时a+b是定值.
椭圆中求定值的问题(觉得自己是数学高手的来)
A为椭圆上的一个动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,AF1=3AF2,设向量AF1=a F1B,向量AF2=b F2C,证明:当A点在椭圆上运动时a+b是定值.
椭圆中求定值的问题(觉得自己是数学高手的来)A为椭圆上的一个动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,AF1=3AF2,设向量AF1=a F1B,向量AF2=b F2C,证明:当A点在椭圆上运动时a+b是定值.
记椭圆方程:x^2/m^2+y^2/n^2=1 (m>n>0),左焦点F1,右焦点F2,A点坐标(x0,y0)
当AC垂直于x轴时,x0^2=(m^2-n^2),代入椭圆方程得:
y0^2=n^4/m^2
即:AF2=n^2/m
又:AF1=3AF2,AF1+AF2=2m(椭圆定义)
则AF2=m/2
联立得:m^2=2n^2
(椭圆方程:x^2+2y^2=2n^2,x[F1]=-n,x[F2]=n)
向量AF1=a F1B,向量AF2=b F2C,焦点在线段AB或AC上,所以a>0,b>0
a=(y0-y[F1])/(y[F1]-y[B])=-y0/y[B],得:y[B]=-y0/a
b=(y0-y[F2])/(y[F2]-y[C])=-y0/y[C] ,得:y[C]=-y0/b
a=(x0-x[F1])/(x[F1]-x[B])=(x0+n)/(-n-x[B]) ,得:x[B]=-n-(x0+n)/a
b=(x0-x[F2])/(x[F2]-x[C])=(x0-n)/(n-x[C]) ,得:x[C]=n-(x0-n)/b
B,C坐标代入椭圆方程得:
(-n-(x0+n)/a)^2+2(-y0/a)^2=2n^2
(n-(x0-n)/b)^2+2(-y0/b)^2=2n^2
2y0^2=2n^2-x0^2
联立消项化简得:
a^2+b^2+a^2b+ab^2-4ab-5a-5b-6=0
(a+1)(b+1)(a+b-6)=0
得:a+b=6,故得证.
做得好,做的妙