已知双曲线x2/a2-y2/b2=1(a>0,b>0)及其上任一点P,求证:点P到双曲线两渐近线的距离之积为定值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:42:53
已知双曲线x2/a2-y2/b2=1(a>0,b>0)及其上任一点P,求证:点P到双曲线两渐近线的距离之积为定值
xRN@~+JCBo@Pj^ PILDQ*íl[!r|;|<-kXkʞ`]υ*tyA[xB}UE}vs}5##O Χ3K܏7g~. Z0#hP21qZ#fGE3Dv2Q+Mgnߜ 1r /Z:A}$sDxI7

已知双曲线x2/a2-y2/b2=1(a>0,b>0)及其上任一点P,求证:点P到双曲线两渐近线的距离之积为定值
已知双曲线x2/a2-y2/b2=1(a>0,b>0)及其上任一点P,求证:点P到双曲线两渐近线的距离之积为定值

已知双曲线x2/a2-y2/b2=1(a>0,b>0)及其上任一点P,求证:点P到双曲线两渐近线的距离之积为定值
显然,两渐近线的方程分别是:x/a+y/b=0、x/a-y/b=0,即:bx+ay=0、bx-ay=0.
令点P的坐标为(m,n),则:
点P到bx+ay=0的距离d1=|bm+an|/√(a^2+b^2);
点P到bx-ay=0的距离d2=|bm-an|/√(a^2+b^2).
∴d1d2=|(bm)^2-(an)^2|/(a^2+b^2).
∵点P(m,n)在双曲线x^2/a^2-y^2/b^2=1上,∴m^2/a^2-n^2/b^2=1,
∴(bm)^2-(an)^2=(ab)^2,
∴d1d2=|(bm)^2-(an)^2|/(a^2+b^2)=|(ab)^2|/(a^2+b^2)=定值.

设双曲线x2/a2-y2/b2=1(0 设双曲线x2/a2+y2/b2=1(0 双曲线x2/a2-y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 双曲线x2/a2-y2/b2=1(0 1.设双曲线x2/a2+y2/b2=1(0 急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为 已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为 双曲线 x2/a2-y2/b2=1与x2/b2-y2/a2=1的相同点?高手请教! 已知p是双曲线x2/a2-y2/b2=1(a>0,b>0)的半焦距为c,若b2-4ac 已知双曲线x2/a2-y2/b2=1 (a>0 b>0 ) 与直线y=2x 有交点 则双曲线离心率取值范围 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双...已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双曲线C 已知双曲线x2/a2-y2/b2=1和椭圆x2/m2+y2/b2=1(a>0,m>b>0)的离心率乘积根号2那么以a,b,m为边长的三角形是什么三角形? 已知双曲线x2/a2-y2/b2=1(a大于0,b大于0)的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF已知双曲线x2/a2-y2/b2=1(a大于0,b大于0)的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则 已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两条渐进性与椭圆的交点构成的 设双曲线x2/a2-y2/b2,a>0,b>0.的渐近线与抛物线y=x2+1相切,求双曲线的离心率.2代表平方x2/a2-y2/b2=1 双曲线x2/a2-y2/b2=1(a>0,b>0)与双曲线y2/b2-x2/a2=1(a>0,b>0)的离心率分别为e1,e2,则1/e1+1/e2的最大值为