三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 20:41:13
xRN@~֊HX'/JP,DSD `Ńݖn[ԃto|Fp<R|6۫Ia^&*)XWe?{07$UQ<{ :i
#ǿ9F["+IF<ZVk3=O/-҆3-q⍪mĭ53Ka`/f }S[4ge`G] ģKbwWS-O|b&($vG5qVb|B"Y,)8fW!ǫN].1ˤVtHM^i*^[$j~C-txVWO,ϝ[q$un_߲!!bƤ&Ǡ2߹,upI-#2`helCH!A;H 5ØCG}t
三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
三角证明题
已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB
求证:三角形ABC是以A为直角顶点的等腰直角三角形
三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
高中数学有七八年没看了.格式写的不好.见谅
证明:因为(sinB)^2+(cosB)^2=1
所以,(cosB)^2+(cosC)^2=(sinB)^2+(cosB)^2+(cosA)^2.
化简,(cosC)^2=(sinB)^2+(cosA)^2.
又因为cosC=sinB
所以(cosA)^2=0.cosA=0.
因为ABC是三角形,所以 A=90°
因为sinA=2sinBcosC.所以2sinBcosC=1.
2(sinB)^2=1.sinB=2分之根号2
B=45°.显然C=45°.所以ABC是以A为直角顶点的等腰直角三角形
因为cosC=sinB,所以(cosB)^2+(cosC)^2=(cosB)^2+(sinB)^2=1
所以(cosA)^2=0,cosA=0,A为三角形内角,所以只能为90度
又sinA=sin(B+C)=sinBcosC+sinCcosB=2sinBcosC,
化简有sin(B-C)=O,在三角形内角中,只有B-C=0,
所以其为以A为直角顶点的等腰直角三角形
已知三角形b.b=a.c,cos(A-C)+cosB=3/2,证明三角形为等边三角形.
三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
数学三角恒等变化已知tana=4倍根号3,cos(a+b)=-11/14,0<a<兀/2,0<b<兀/2,求cosb?
关于高中数学简单三角恒等变换.已知tana=-1/3 ,cosb=根号5/5,a,b都属于(0.PI0,求函数根号2*sin(x-a)+cos(x+b)的最大值.最好有过程.
已知cos(a+b)cos(a-b)=1/3 ,求(cosa)^2-(cosb)^2
sinA(cos(2A+B)+cosB)=cosA(sin(2A+B)-sinB)证明
不等式题目:在△ABC中请证明sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2)如题所示sinA+sinB+sinC≤cos(A/2)+cos(B/2)+cos(C/2),请证明这个式子,还有一个类似的cosA+cosB+cosC≤sin(A/2)+sin(B/2)+sin(C/2)也请专家证明
已知sinA+sinB=1/3,cosA+cosB=2/5,求cos(A-B)的值.如题
三角恒等变换1已知sina+sinb+siny=0,cosa+cosb+cosy=0,求cos(b-y)的值
三角恒等式 证明题
证明:cos(a+b)=cosa×cosb-sina×sinb
帮我做几道证明题:1,在三角形ABC中,已知sinA=2cosB*sinC,求证b=c
已知sina+sinb=1/2,cosa+cosb=1/3,求cos(a-b/2)
已知sinB+cosB=1 ,求sin^2B-cos^2的值
已知2cos(2a+b)+cosb=0,求tan(a+b)tana
三角形ABC中已知COS(A-C)+CoSB=1,a=2b、求C
已知sina+sinB=1/2,cosa+cosB=1/3,则cos(a-B)=
已知cosa+cosb=1/2,sina+sinb=1/3,求cos(a-b)rt.