三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 20:41:13
三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
xRN@~֊HX'/JP,DSD `Ńݖn[ԃto|Fp<R|6۫Ia^&*)XWe?{07$UQ<{ :i #ǿ9F["+IF< ZVk3=O/-҆3-q⍪mĭ53Ka`/f }S[4ge`G]ģKbwWS-O|b&($vG5qVb|B"Y,)8fW!ǫN].1ˤVtHM^i*^[$j~C-txVWO,ϝ[q$un_߲!!bƤ&Ǡ2߹,upI-#2`helCH!A;H 5ØCG}t

三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
三角证明题
已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB
求证:三角形ABC是以A为直角顶点的等腰直角三角形

三角证明题已知(cosB)^2+(cosC)^2=1+(cosA)^2,sinA=2sinBcosC,cosC=sinB求证:三角形ABC是以A为直角顶点的等腰直角三角形
高中数学有七八年没看了.格式写的不好.见谅
证明:因为(sinB)^2+(cosB)^2=1
所以,(cosB)^2+(cosC)^2=(sinB)^2+(cosB)^2+(cosA)^2.
化简,(cosC)^2=(sinB)^2+(cosA)^2.
又因为cosC=sinB
所以(cosA)^2=0.cosA=0.
因为ABC是三角形,所以 A=90°
因为sinA=2sinBcosC.所以2sinBcosC=1.
2(sinB)^2=1.sinB=2分之根号2
B=45°.显然C=45°.所以ABC是以A为直角顶点的等腰直角三角形

因为cosC=sinB,所以(cosB)^2+(cosC)^2=(cosB)^2+(sinB)^2=1
所以(cosA)^2=0,cosA=0,A为三角形内角,所以只能为90度
又sinA=sin(B+C)=sinBcosC+sinCcosB=2sinBcosC,
化简有sin(B-C)=O,在三角形内角中,只有B-C=0,
所以其为以A为直角顶点的等腰直角三角形