设f1(x)=2x-1,f2(x)=x^2,数列﹛An﹜的前n项的和为Sn,且Sn=f2(n),数列﹛Bn﹜中,B1=2,Bn=f1(Bn-1)求数列﹛An﹜的通项公式 求证:数列﹛Bn-1﹜是等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:47:16
设f1(x)=2x-1,f2(x)=x^2,数列﹛An﹜的前n项的和为Sn,且Sn=f2(n),数列﹛Bn﹜中,B1=2,Bn=f1(Bn-1)求数列﹛An﹜的通项公式 求证:数列﹛Bn-1﹜是等比数列
xQJ@~=&aa 4{A=.A/RЀEj%AzF/hiis+8-*B2;|?3Nnއ)aSDAQ

设f1(x)=2x-1,f2(x)=x^2,数列﹛An﹜的前n项的和为Sn,且Sn=f2(n),数列﹛Bn﹜中,B1=2,Bn=f1(Bn-1)求数列﹛An﹜的通项公式 求证:数列﹛Bn-1﹜是等比数列
设f1(x)=2x-1,f2(x)=x^2,数列﹛An﹜的前n项的和为Sn,且Sn=f2(n),数列﹛Bn﹜中,B1=2,Bn=f1(Bn-1)
求数列﹛An﹜的通项公式 求证:数列﹛Bn-1﹜是等比数列

设f1(x)=2x-1,f2(x)=x^2,数列﹛An﹜的前n项的和为Sn,且Sn=f2(n),数列﹛Bn﹜中,B1=2,Bn=f1(Bn-1)求数列﹛An﹜的通项公式 求证:数列﹛Bn-1﹜是等比数列
当n=1时,A(1) = S(1) = 1^2 = 1 = 2*1-1;
当n>1时,A(n) = S(n)-S(n-1) = n^2 - (n-1)^2 = 2n-1.
所以 {A(n)} 的通项公式是 2n-1.
因为 B(n) = 2*B(n-1) - 1,所以 B(n)-1 = 2 * (B(n-1)-1).
{B(n)-1} 是首项为 1,公比为 2 的等比数列.

设f1(x)为正比例函数,f2(x)为反比例函数,且f1(1)/f2(1)=3,f1(2)-3f2(2)=3,求f2(x) 设函数f1(x)=x^1/2,f2(x)=x^-1,f3(x)=x^2,则f3(f2(f1(2011)))=? 设函数f1(x)=x^1/2,f2(x)=x^-1,f3(x)=x^2,则f3(f2(f1(2007)))=? 设函数f1(x)=x^1/2,f2(x)=x^-1,f3(x)=x^2,则f1{f2[f3(2007)]}=能讲下为什么不?不太会算 设函数f1(x)=x^1/2,f2(x)=x^-1,f3(x)=x^2,则f3[f2[f1(2011)]]= 设f(x)=2x+1,f1(x)=f[f(x)],fn(x)=f[fn-1(x)],(n>1,n属于正实数) 求f1(x) f2(x) f3(x)归纳fn(x)表达式 f1(x)=x^2,f2=(x^-1),f3(x)=x^3,则f1(f2(f3(2007)))=? 设函数f1(x)=x的1/2次方,f2(x)=x的-1次方,f3(x)=x的平方,则f1(f2(f3(2007))) 设 f(x)=sinx,f1(x)=f'(X),f2(X)=f1'(X).fn+1(X)=fn'(X) n属于N+ 求f2007(X)=? 设函数f0(x)=绝对值x,f1(x)=绝对值f0(x)-1,f2(x)=绝对值f1(x)-2,求函数y=f2(x)的图像与x轴所围成的封闭图形的面积. 设函数f1(x)=x1/2 f2(x)=x-1 f3(x)=x2 (注:x后的是指数),则f1(f2(f3(2012))=? 已知函数f1(x)=x,f2(x)=(1/2)^x-1,f3(x)=a-x,函数g(x)取f1(x),f2(x),f3(x)中的最小值,则g(x)的最大值是 设f0(x)=cosx,f1(x)f0'(x),f2(x)=f1'(x),...,fn+1(x)=fn'(x),n属于正整数,则f2008 f(x)=x/(1+x) x>=0 f1(X)=f(X) fn(X)=fn-1[fn-1(x)]求fn(x)证明:f1(X)+2f2(X)+3f3(x)+……+nfn(X) 设f1(x)=x^2-b,f2(x)=-(x+a)/f3(x) (a,b∈R),且f2(x)在(-∞,1]上单调递增,在【1,3)上递减求a,b之间的关系式 已知f1(x)=|3^x-1|,f2(x)=|3^x-9|,且f(x)=f1(x),f1(x)f2(x).(3)当0 (2008•江苏)已知函数f1(x)=3|x-p1|,f2(x)=2•3|x-p2|(x∈R,p1,p2为常数).函函数f(x)定义为:对每个给定的实数x,f(x)={f1(x)若f1(x)≤f2(x)f2(x)若f1(x)>f2(x)(1)求f(x)=f1(x)对所有实数x成 设函数f(x)是f1(x)=4x+1,f2(x)=x+2,f3(x)=-2x+4三个函数的最小值,则f(x)的最大值为