F(x+y)=f(x)+f(y)+2xy f'(0)=2fx定义域为r,求fx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:36:04
F(x+y)=f(x)+f(y)+2xy f'(0)=2fx定义域为r,求fx
xQJ0~HKm/_BTʼUmntS!>E[v:'I}\gUmQ̓: ̈́6&7ln&5$Z[5OVj_Ke0Q'E%AQKVRg`*79QV?-IkKuCEBK[M^f|z%aI6;gU"Wd(r0 ?{(2V\;ۻs}ҐDPgi-Jx>" ~KTBGW&`լlK ʥY-?BʡCq-cs

F(x+y)=f(x)+f(y)+2xy f'(0)=2fx定义域为r,求fx
F(x+y)=f(x)+f(y)+2xy f'(0)=2
fx定义域为r,求fx

F(x+y)=f(x)+f(y)+2xy f'(0)=2fx定义域为r,求fx
假设y > 0,记y = Δx,则有
f(x + Δx) - f(x) = f(Δx) + 2xΔx
从而有
[f(x + Δx) - f(x)]/Δx = f(Δx) + 2x
对上式取极限,使得Δx趋近于0+,则左式就是f'(x),即
f'(x) = limf(Δx) + lim2x =f(0) + 2x
所以现在要把f(0)搞定,令x = 0,有
f'(0) = f(0) = 2
所以
f'(x) = 2x + 2
f(x) = x^2 + 2x + C
代入f(0) = 2,有C = 2
所以f(x) = x^2 + 2x + 2