f(x)满足F(x+y)=f(x)+F(y)+2xy,若f(1)=2,求f(-3)值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:30:14
x)KӨ|{m4*+5mAnF:/ij<ؔkaMR>yl(i4J[C3z
ZAʁZ!# YgÓKA
ʀu*t7 l
"`& R&@Qflrf@Q3<;l]#I ѩz(
f(x)满足F(x+y)=f(x)+F(y)+2xy,若f(1)=2,求f(-3)值
f(x)满足F(x+y)=f(x)+F(y)+2xy,若f(1)=2,求f(-3)值
f(x)满足F(x+y)=f(x)+F(y)+2xy,若f(1)=2,求f(-3)值
取 y=1,则 f(x+1)=f(x)+f(1)+2x=f(x)+2+2x
所以 f(x)=f(x+1)-2x-2
f(0)=f(1)-2=0
f(-1)=f(0)+2-2=0
f(-2)=f(-1)+4-2=2
f(-3)=f(-2)+6-2=6
-6吧
若x∈R,f(x)满足f(x*y)=f(x)+f(y),则f(x)的奇偶性
f(x)满足f(1)=1/4 4f(x)f(y)=f(x+y)+f(x-y) (x ,y属于R)则 f(2010)=?
已知函数f(x)对于任意实数xy 满足f(x+y)=f(x)+f(y).求证f(x-y)=f(x)-f(y)
f(x)=y满足f(xy)=f(x)+f(y)求f(1),f(-1)
y=f(x)满足f(3+x)(3
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)×f(y),且f(0)≠0,证明f(x)是偶函数
x∈R,F(x)满足F(xy)=F(x)+F(y),证明F(x)为偶函数 如何证明?
y=f(f(f(x))) 求导
f(x)满足f(x+y)+f(xy)=2f(x)f(y)求函数的奇偶性
函数f(x) 满足关系f(xy)=f(x)+f(y),x,y属于R,求f(1);
函数f(x)满足关系f(xy)=f(x)*f(y)(x,y属于R)求f(1)
f(xy)=f(x)+f(y),证明f(x/y)=f(x)-f(y)
已知函数f(x)满足:f(1)=1/4,4f(x)f(y)=f(x+y)+f(x-y),则f(2015)=
已知函数f(x)满足,f(1)=0.25,4f(x)f(y)=f(x+y)+f(x-y) 则f(2010)=
已知f(x)满足f(1)=1/4 ,4f(x)f(y)=f(x+y)+f(x-y) .求f(2010)=____?
已知函数f(x)满足f(2)=1/2,2f(x)f(y)=f(x+y)+f(x-y),则f(2012)=?
已知函数f(x)满足f(1)=1/4,f(x)+f(y)=4f(x+y/2)*f(x-y/2)则f(-2011)=?
已知函数f(x)满足:f(1)=0,f(x)f(y)=f(x+y)+f(x-y),则f(2014)=