请问 用比较审敛法判断级数收敛性 1/(n*n^1/n) (n=1 to 无穷)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:02:30
请问 用比较审敛法判断级数收敛性 1/(n*n^1/n) (n=1 to 无穷)
xSJABI,f\ * i)kcBkHhk&3y/Lpw%/֧s瞽f *7369cVZԸ` sɬ&3~#S$`GîA4}X]9nQ]ߚg?9}@۫;i]}[찌V? tS5En^'gDAZ4e+K˧R#/N^M^$'d*wJx=$G>"؍wC\7޿[X$qfQAHҩ1YY` 9mf֓a}nm_Kh̖)~aoײM,'8H:LG$iXh>iˢ]Y)>-|FEzSD5翂³+O ?WxЖ;Vk`m@r.xֿ9u0uBp6n*W)348" !p

请问 用比较审敛法判断级数收敛性 1/(n*n^1/n) (n=1 to 无穷)
请问 用比较审敛法判断级数收敛性 1/(n*n^1/n) (n=1 to 无穷)

请问 用比较审敛法判断级数收敛性 1/(n*n^1/n) (n=1 to 无穷)
首先你自己可以证明 lim 1/(n^(1/n))=1
而 lim 1/(n·n^1/n) / (1/n) = lim 1/(n^1/n) = 1
所以原级数和1/n有相同敛散性.
故原级数发散.

请问 用比较审敛法判断级数收敛性 1/[n*n^(1/n)] (n=1 to 无穷)
u‹n›=1/[n*n^(1/n)] =1/n^[(n+1)/n]
将此级数与调和级数∑(1/n)作个比较:
由于n→∞lim{1/n^[(n+1)/n]}/(1/n)=n→∞limn/{n^[(n+1)/n]}=n→∞limn^[1-(n+1)/n]
=...

全部展开

请问 用比较审敛法判断级数收敛性 1/[n*n^(1/n)] (n=1 to 无穷)
u‹n›=1/[n*n^(1/n)] =1/n^[(n+1)/n]
将此级数与调和级数∑(1/n)作个比较:
由于n→∞lim{1/n^[(n+1)/n]}/(1/n)=n→∞limn/{n^[(n+1)/n]}=n→∞limn^[1-(n+1)/n]
=n→∞lim[n^(-1/n)]=n→∞lim[1/n^(1/n)]=1/{n→∞lim[n^(1/n)]}
=1/{n→∞lime^[(1/n)lnn]}=1/{n→∞lime^(1/n)}=1/e°=1
故原级数与调和级数等价,而调和级数是发散的,因此原级数也是发散的。
注:1/{n→∞lime^[(1/n)lnn]}=1/{n→∞lime^(1/n)用了罗比塔法则。

收起