limxn=0,limxn+1/xn=a,证明|a|≤1lim(xn)=0,lim((xn+1)/(xn))=a,证明|a|≤1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:40:55
limxn=0,limxn+1/xn=a,证明|a|≤1lim(xn)=0,lim((xn+1)/(xn))=a,证明|a|≤1
x)̭ȳ5چ@N΋f$<\bѨӄhI*'@2bM/C3sStj*j uJ2Rj*2kSS ҋ3Ҋsryz` p$ف )S

limxn=0,limxn+1/xn=a,证明|a|≤1lim(xn)=0,lim((xn+1)/(xn))=a,证明|a|≤1
limxn=0,limxn+1/xn=a,证明|a|≤1
lim(xn)=0,lim((xn+1)/(xn))=a,证明|a|≤1

limxn=0,limxn+1/xn=a,证明|a|≤1lim(xn)=0,lim((xn+1)/(xn))=a,证明|a|≤1
if for some n,|xn|>1,then |xi| keep growing from then on.
so |a|≤1