区间[1/2.0]求定积分arctan2xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:36:26
区间[1/2.0]求定积分arctan2xdx
x){ڳ-цFz66=]7O;K*R*lR_`gC<Z!@!V`Gmbvm 0n,TZ2ڨB_Pۤ"H3l} ] C}M$H*a,L 9ypePjrM8ߠkh[$Aze H(3 l>{:@v)PVTPn v!T=#Ӝ

区间[1/2.0]求定积分arctan2xdx
区间[1/2.0]求定积分arctan2xdx

区间[1/2.0]求定积分arctan2xdx
应是区间 [0,1/2] 吧!
∫<0,1/2>arctan2xdx = [xarctan2x]<0,1/2>-∫<0,1/2>[2x/(1+4x^2)]dx
= π/8-(1/4)∫<0,1/2>[1/(1+4x^2)]d(1+4x^2)
= π/8-(1/4)[ln(1+4x^2)]<0,1/2>
= π/8-ln2/4 = (π-2ln2)/8.

分部积分:∫arctan2xdx=xarctan2x-∫[2x/(1+4x²)]dx=xarctanx-∫d(x²)/(1+4x²)=
xarctan2x-0.25ln(1+4x²)+C,代入上下限得结果为π/8-0.25ln2